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Abstract

The configuration of a forward detector at a collider is similar to that in a fixed-target
experiment except for the necessary presence of a beampipe at colliders, with the attendant
possibility of secondary-particle production in the pipe wall. We review the efficacy of various
beampipe geometries in minimizing this background. Less detailed discussions of this subject
are given in refs. [1]-[4].

1 Straight Pipe

The simplest beampipe at a collider is a straight cylindrical pipe of radius » and thickness
t. Preferably it is made of beryllium, whose radiation length is 35 cm, and whose pion
interaction length is 112 cm. Straight pipes of small radius can be made as thin as 0.3 mm,
corresponding to 0.001 radiation length and 0.0003 interaction lengths.

The ‘beampipe problem’ is that for (straight) tracks at small angles 6 to the beam the
effective thickness of the beampipe is

t
tegr & g (straight pipe).

Thus, for example, for angles § < 1 mrad (or pseudorapidity n = —Intan6/2 > 7.6) the
beampipe presents more than one radiation length to the track, and more than 1/3 interaction
length.

The ensuing secondary interactions render charged—partlcle tracking and identification
very difficult, although calorimetry is less disturbed.

If one requires that less than 0.1 radiation lengths are encountered by the track, the
straight pipe could not be used for n > 5.3, etc.

2 Corrugated Pipe

For larger radii and thin walls a straight pipe is considered unstable against implosion, and

a corrugated pipe is often used. Typically the profile of the corrugations is a sequence of
half circles of radius R:



For tracks at small angles to the beam the average path length T inside the pipe wall is
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per wall crossing, noting that the longest path occurs for a track whose intercept with the
arc of the pipe subtends angle ¢ given by ¢t = R(1 — cos ¢o), as shown in the sketch. With
two wall crossing per period of length 4R, the total number of wall crossings for a track at
angle 6 is just 1/6, and so the effective thickness of the corrugated pipe is

t
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Thus a corrugated pipe presents more material to a track than a straight pipe for corrugations
of radius R greater than 7.4 — as is typical!

3 Reverse-Flared Pipe

Before considering in detail the option of a flared pipe, we examine the possibility of a
reverse-flared pipe, as shown in the sketch:
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While an expression for the path length inside the wall material can be derived for
arbitrary configurations of flares, it is sufficient to consider a typical geometry as shown
above. In this all tapered sections have the same inner and outer radii, »; and r,, respectively.
The spacings of the flares have been chosen so that a track that passes through the inner
radius of the nth flare just passes through the outer radius of the n + 2nd flare (meanwhile
passing through an intermediate region of the n + 1st flare). For definiteness we suppose
that the track through the inner radius of the nth flare has pseudorapidity # = n, so the
corresponding polar angle is

8, ~ 2e™ "2
for n > 1. The reverse flare of the nth section makes angle ¢,, to the beam related by
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where z, is the distance along the beams from the crossing point to the inner radius of the
nth flare section. For 7, > 7, and n > 1 we approximate
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A track at angle 6 with 6, < § < 0,_; crosses the wall of the nth flare at angle § + ¢,,. This
track passes through the nth flare, the vertical section between the nth and n + 1st flare,
and finally through the n + 1st flare for a total path length of
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In our thodel 6/6,, varies between 1 and /e for tracks passing through the nth flare. Hence
the ratio of path length in the reverse-flared pipe to that in a straight pipe obeys
t
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For example, if 7;/r; = 1/10 then the reverse-flared pipe presents only about 1/3 as much
material as the straight pipe, IF the flared pipe could be made of the same thin material as
the straight pipe.

However, as with the straight pipe, the reverse-flared pipe suffers the beampipe problem
at small angles: the path length inside the wall material becomes arbitrarily large.

4 Flared Pipe

A possible solution to the beampipe problem is the use of a flared pipe with one or more
conical segments in which the apex of the cone of half-angle 6, lies at the interaction point.
The surface of the cone may be smooth, or corrugated; we have just seen how the latter
presents more material to tracks that intersect the surface of the cone at small angles.

The flared pipe would be a nearly perfect solution to the beampipe problem if the interac-
tion point were truly a point. In practice the interactions take place along a finite luminous
region of the beamline with an approximately gaussian profile of r.m.s. length o. Tracks
that emanate from a point z not at the center (2 = 0) of the luminous region will intersect
the conical surface of the flared pipe if the track angle lies in some interval around 6y. Here
we calculate the corresponding pseudorapidity interval.

We suppose the flare begins at radius »; at distance z; from the interaction point, and
ends at radius 7, at distance z;. These are related to the cone angle by
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is the length of the flare along the beam. Then the angle of a track emanating from position
z along the beam and intersecting the near end of the flare is
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and similarly for 83, the angle of a track that intersects the far end of the flare.

The corresponding pseudorapidities are
N~ In2 — 11100 - f-,
Zi
and so the rapidity interval for which tracks intersect the flare is
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The average rapidity interval for intersection with the flare is obtained by averaging over the
gaussian profile of the luminous region:
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At the SSC the radius of the beampipe might well be »; = {/7/2 = 1.25 cm, so
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using o = 7 cm as anticipated at the SSC. Some numerical examples are listed below for
(A7) vs. the central rapidity 7o of the flare:

(An)  no
1 2.64
0.3 3.84
0.1 4.94
0.03 6.14
0.01 7.24

If a track intersects the flare the grazing angle with the conical surface is of order
Ograsing ~ 01 — B0 ~ —62.
T1
As z/ry =~ 1 the grazing angle is very small, and any track that hits the flare will almost

certainly interact in the flare wall.
Thus a flared pipe is of little use 7 < 4-5, but a thin straight pipe suffices in this region..
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5 Effect of a Magnetic Field

In the preceding we have supposed that the tracks are straight. If they encounter a magnetic
field before hitting the beampipe the resulting deflections aggravate the beampipe problem.
If the kick of the magnetic field is AP, then the deflection angle is
AP, AP 6,
P R
where 6§ is the production angle of the track. Because of the deflection, charged tracks
produced within :A@ of the cone angle 8, of the flare can intersect the flare, even if the
luminous region had zero length.
In many detector designs the magnet kick is a.bout 1 GeV/c which is approximately the
average transverse momentum of the particles. In this case,

A~ 4,

Al =

and so the rapidity interval over which tracks can be deflected into the flare is
An~2In2 = 1.4.

In this case a flared pipe is nearly useless at any rapidity.

6 Effect of an Antisymmetric Pair of Magnetic Fields

If a magnetic field exists on the beam with a transverse component, this must be compen-
sated with an opposite field to minimize the perturbation on the orbits in the collider. For
example, in an experiment that utilizes a transverse dipole analysis magnet, its field should

be compensated by another transverse dipole of opposite polarity. Kerrse
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A charged particle that is produced at angle 6 to the beam once again has angle § after
passing through both magnetic fields, but the track is offset from its original path. If each
field produces kick AP, then the offset is

APt 212
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where 2o would be transverse position of the track at distance z from the interaction point in
the absence of the fields, and z;, is the distance between the two compensating field regions.
For magnet kicks of order 1 GeV/c we have
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For tracks observed well beyond the second magnet the effect of the pair of kicks is very
slight.

Also, if a flare is located beyond the second magnet, the bad influence of the first field
leading to intersections of tracks with the flare is greatly reduced. The worst remaining
effect is that tracks initially deflected to larger angles will strike the beampipe upstream of
the flare, if their pseudorapidity is within In 2 of that of the flare.

In practice, a compensating magnet would be located no closer than about 20 m from the
crossing point, so that a flare beginning there with an inner radius of 1 cm would correspond
to o = 8.3 Hence for compensated transverse dipoles there remains a beampipe problem in
the range 5 < 7 < 8.

7 Conclusions

A straight beampipe is the best for pseudorapidity up to 5. A corrugated pipe is mechanically
superior to a straight pipe, but presents more material to small-angle tracks. A reverse-flared
pipe can in principle appear thinner than a straight pipe, but still presents unacceptably large
effective thicknesses for 7 > 5. Beyond this value a flared pipe may help reduce interactions
in the pipe. A magnetic field that imparts a kick of order 1 GeV/c to charged tracks prior to
the flare renders the flare largely useless. Some of this bad effect is mitigated if the necessary
compensating field is applied prior to the flare. A complete solution to the beampipe problem
may require spectrometer magnets that are only solenoids, quadrupoles, or higher multipoles
as advocated by Bjorken [4].
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