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Will ‘Ordinary’ Electron-Laser Interactions Preclude

Observation of Nonlinear Strong-Field Effects?

Abstract

We consider whether electrons might never penetrate to the high-field core of a laser
pulse either because of deflection by the ponderomotive force or attenuation by Compton
scattering.

1 Deflection of Electrons by the Ponderomotive Force

I first recall the argument given in section 2-1d of my review paper, DOE/ER/3072-38 (Sept.
2, 1986).

The effective mass, m̄, of an electron inside a wave field can be thought of as associated
with an effective potential:

Ueff = m̄c2 = mc2
√

1 + η2,

where η2 = e2〈E2〉/(mωc)2 is the classical, dimensionless measure of the intensity of the
electric field E.

For a field that is nonuniform, the intensity gradient can be associated with a force,

F = −∇U = − mc2

2
√

1 + η2
∇η2.

If the wave field is that of a focused laser beam, intensity gradients occur because of the
laws of diffraction. This is usefully expressed by the shape of a gaussian laser beam,

η2(r, z) =
η2

0

1 + z2/z2
0

exp

( −r2

2σ2
r(1 + z2/z2

0)

)
,

where σr describes the transverse gaussian profile of the beam at its waist, and

z0 =
2πσ2

r

λ

is called the Rayleigh range and measures the length over which the intensity falls by 2 along
z (assuming a sinusoidal time dependance).

The laser beam may also be pulsed. We suppose it to have a gaussian profile in time,
and let σt be the corresponding variance.
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Note that there are now two reasons for longitudinal intensity gradients: the Rayleigh
range of diffraction, and the temporal pulse width. For a tightly focused laser beam, the
Rayleigh range is likely to be shorter than the temporal pulse width, and hence dominates
the longitudinal intensity gradient.

A focus is achieved with a lens (or mirror). If the laser beam is ‘matched’ to the lens
in the sense that σr(lens) =

√
2D/4 where D is the diameter of the lens, then the σ of the

intensity profile at the lens is D/4 and about 86% of the beam passes through the lens to
be focused. In this case, the diffraction-limited spot size, σr, at the focus is given by

σr =

√
2

π

f

D
λ,

where f is the focal length of the lens. A good lens might have f/D = π/
√

2, leading to
σr = λ and z0 = 2πλ. For σt to be less than z0 would require a pulse of duration less than 6
cycles r.m.s, or 14 cycles full-width at half-maximum. This condition has been met only in
very special low-power lasers.

Given that the laws of diffraction determine the intensity profile, we see that the trans-
verse gradient is always larger than the longitudinal for any lens with f/D > 1/4. [I missed
this point in the 1986 paper, where I remarked only on the longitudinal gradient.] Thus the
relevant form for ∇η2 on p. 1 is

dη2

dr
whose peak value is approximately

η2
0

σr

.

The corresponding transverse force lasts for a time approximately z0/c = 2πσ2
r/λc, so the

electron experiences a transverse momentum kick of

∆PT ≈ πmc
η2

√
1 + η2

σr

λ

on its way into the laser pulse. The average transverse velocity of the electron due to the
gradient force is

〈v〉 =
∆PT

2γm
,

on recalling a result of section 2-2d of my review paper that the energy of the electron inside
the wave field is approximately γmc2 so long as η ¿ γ.

The electron moves transversely by 〈v〉z0/c on its way into the pulse. We require this to
be much less than σr, otherwise the electron will be deflected out of the core of the beam.
Thus we arrive at the condition

η2

√
1 + η2

¿ γλ2

π2σ2
r

=
γ

2(f/D)2
=

4γ

(f/σr(lens))2
.

In an initial experiment to demonstrate the nonlinear effects of large η on Compton
scattering, a value of η ≈ 0.3 is perhaps optimal. For smaller η the effects are very small,
and for larger η the various multiphoton contributions blur into a continuum. Hence we need

γ À 0.2(f/D)2 = 1.8,
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if we use a lens with f/D = 3.
At Brookhaven Lab, an experiment is in preparation to study the nonlinear Compton

effect with 50-MeV electrons, and a CO2 laser with λ = 10 µm and η ≈ 0.1-0.3. In this
example, γ = 100 and there should be little problem of the electrons being diverted from
the core of the laser pulse.

2 Attenuation of the Electron Beam by Compton

Scattering

The electrons may suffer a Compton scatter before they reach the center of the laser pulse,
and hence the signature of any nonlinear QED effects at the pulse center would be confused.

I return to an argument given in section 2-2c of my 1986 review paper.
For pulses with η <∼ 1 we may use the Larmor formula for the rate of energy loss by

an electron to Compton scattering (if the center-of-mass energy is so high that quantum
corrections are important, these always reduce the rate!):

dU?

dt?
=

2e4E?2

3m2c3
,

where the superscript ? indicates quantities to be evaluated in the (average) rest frame of
the initial electron. It is memorable to use one cycle of the laser field oscillation as the unit
of time: dt? = 2π/ω?. Then the energy radiated in one cycle of the wave is

dU? =
4πe4E?2

3m2c3ω?
per cycle.

The number of photons radiated is

dN =
dU?

h̄ω?
=

4π

3

e2

h̄c

e2E?2

m2ω?2c2
=

4π

3
αη2 photons per cycle.

The effective number of cycles during which this radiation occurs (as the electron enters
the laser pulse) can be estimated as the Rayleigh range divided by the wavelength:

z0

λ
=

2πσ2
r

λ2
=

4

π

(
f

D

)2

,

supposing the laser is focused in a lens of focal length f and aperture D as described above.
Again we note that this is a short time compared to the temporal pulse length of any laser
that might be used for high-field studies.

Then the number of photons radiated per electron is

dN =
16

3
α

(
f

D

)2

η2 ≈ 0.04

(
f

D

)2

η2.

A good lens might have f/D ≈ 2, so there is only a 16% chance of an electron undergoing
a Compton scatter on the way into a laser beam with η = 1. And for η < 1, the scattering
rate is quadratic in η.
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Thus even when a single Compton scatter effectively removes the electron from the beam,
studies of nonlinear effects should be possible for laser field with η of order 1.

For the Brookhaven experiment at U = 50 MeV mentioned above, the electron loses at
most 3 keV in a Compton scatter, and for η = 0.3 the average number of Compton scatters
per electron is 0.12.

In any case, the Compton scatter could be important only if the electron loses a significant
fraction of its energy in the scatter. Now the maximum energy lost by an electron that
Compton scatters in a wave field with η ¿ 1 is

∆U

U
=

4γω/m

1 + 4γω/m
,

where ω is the energy of a photon of the wave field. Hence the possible attenuation of the
electron will be important only for

γ >∼
m

4ω
.

However, this includes the interesting case that U = 50 GeV (SLAC or LEP) for which
γ = 105 and a Nd:YAG laser with ω = 1 eV.

3 Attenuation of Photon Beams by the Breit-Wheeler

Process

My own interest in nonlinear QED with a 50-GeV electron beam involves studies of light-
by-light scattering. Here the electron-laser collision serves only to produce a high-energy
photon beam that is then scattered against a second piece of the laser pulse. [Both scattered
and unscattered electrons are swept away before the light-by-light collision.] It is desireable
for this that the probability of a Compton scatter of a 50-GeV electron be near 1, for which
we need only η ≈ 1 as noted above.

In principle, the high-energy photon beam might be attenuated by interaction with the
leading edge of the laser pulse via the Breit-Wheeler process

γγ → e+e−,

whose cross section is similar to that for Compton scattering. However, we are actually
below the kinematic threshold for this process if we use 50-GeV electrons and a YAG laser;
it can only occur via multiple laser photons. Thus the high energy photons will not interact
at all with the laser until they reach the core of the laser beam where η ≈ 1.

4 Vacuum Čerenkov Radiation

As a final remark, I consider the possibility of vacuum Čerenkov radiation, in which an
electron emits a Čerenkov photon in the vacuum as polarized by a strong wave field. The
threshold electron energy for this effect is given by

γ0 =
m

ηω

√√√√ 1 + η2

22α/45π
.
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To keep the Čerenkov threshold ‘low’ it is desirable to operate the laser near η = 1, but
it does not pay to go much higher as the threshold changes little once η > 1. Again, the
attentuation of the electron beam by Compton scatter with the laser would be annoying but
not fatal for such an experiment.
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