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1 Problem

Discuss the motion of a cylinder that rolls without slipping inside another cylinder, when
the latter rolls without slipping on a horizontal plane.

2 Solution

This problem is a variant of the case of one cylinder rolling on the outside of another rolling
cylinder [1]. Special cases involving cylindrical shells or a solid inner cylinder are considered
in ex. 2, p. 372 of [4], and in sec. 8.5, p. 111 of [5].

When one cylinder is directly above the other, we define the line of contact of the outer
cylinder, 1, with the horizontal plane to be the z-axis, at x = y = 0. Then, the condition of
rolling without slipping for the outer cylinder, of outer radius R1 is that when it has rolled
(positive) distance x1, the initial line of contact has rotated through angle φ1 = x1/R1,
clockwise with respect to the vertical, as shown in the figure below. This rolling constraint
can be written as,

x1 = R1φ1. (1)

Meanwhile, if the inner cylinder, 2, rolls such that the line of centers (in the x-y plane)
makes angle θ (positive counterclockwise) to the vertical, then the initial point of contact of
the upper cylinder has rotated through angle φ2, measured clockwise from the line of centers,
such that for rolling without slipping the arc lengths are equal between the initial points of
contact of the two cylinders and the new point of contact. This second rolling constraint
can be written in terms of the inner radius r1 of the outer cylinder, and the (outer) radius
r2 of the inner cylinder, as,

r2φ2 = r1(φ1 + θ) , φ2 − θ =
r1

r2
φ1 +

r1 − r2

r2
θ =

r1φ1 + rθ

r2
with r ≡ r1 − r2. (2)
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where φ2 − θ is the angle of the initial point of contact of cylinder 2 to the vertical.
Of course, the center of cylinder 1 is at y1 = R1, and so long as the two cylinders are

touching, their axes are separated by distance r = r1 −r2. Altogether there are 4 constraints
on the 6 degree of freedom (of two-dimensional motion) of the system, such that there are
only two independent degrees of freedom, which we take to be the angles φ1 and θ.

Energy E = T +V is conserved, and since neither the kinetic energy T nor the potential
energy V (taken to be zero when θ = θ0),

V = m2gr(cos θ0 − cos θ), (3)

depend on coordinate φ1 there will be another conserved quantity, the canonical momentum,

pφ1
=

∂L
∂φ̇1

=
∂T

∂φ̇1

. (4)

where L = T − V is the Lagrangian of the system. However, pφ1
is not a single angular

momentum.1

Since there are two conserved quantities and two degrees of freedom, there is no need to
evaluate Lagrange’s equations of motion to determine the motion, so long as the cylinders
remain in contact and roll without slipping.

The kinetic energy of cylinder 1, whose axis is at (x1, R1) is,

T1 =
m1ẋ

2
1

2
+

I1 φ̇1

2
=

1 + k1

2
m1R

2
1 φ̇

2

1, (5)

using the rolling constraint (1) and the expression I1 = k1m1R
2
1 for the moment of inertia I1

in terms of parameter k1 and the mass m1.
The kinetic energy of cylinder 2, whose axis is at (x2, y2), is, using I2 = k2m2r

2
2,

T2 =
m2(ẋ

2
2 + ẏ2

2)

2
+

I2(φ̇2 − θ̇)2

2
=

m2(ẋ
2
2 + ẏ2

2)

2
+

k2m2r
2
2(φ̇2 − θ̇)2

2
, (6)

noting that the separation of kinetic energy into energy of the center-of-mass motion plus
energy of rotation about the center of mass requires the angular velocity to be measured
with respect to a fixed direction in an inertial frame. Then, recalling eqs. (1)-(2), we have,

x2 = x1 + r sin θ, ẋ2 = R1 φ̇1 + r cos θ θ̇, (7)

y2 = r1 − r cos θ, ẏ2 = +r sin θ θ̇, (8)

φ̇2 − θ̇ =
r1 φ̇1 + r θ̇

r2
, (9)

and the kinetic energy of cylinder 2 can be written as,

T2 =
m2

2
[R2

1 φ̇
2

1 + 2R1r cos θ φ̇1 θ̇ + r2 θ̇
2
]

+
k2m2

2
[r2

1 φ̇
2

1 + 2r1r φ̇1 θ̇ + r2 θ̇
2
]

=
R2

1 + k2r
2
1

2
m2 φ̇

2

1 + r(R1 cos θ + k2r1)m2 φ̇1 θ̇ +
1 + k2

2
m2r

2θ̇
2
. (10)

1An example of a system in which there exists a constant of the motion involving angular velocity and
moments of inertia, but which is not a single angular momentum, has been given in [2]. See also [3].
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The total kinetic energy T1 + T2 is,

T =
[(1 + k1)m1 + m2]R

2
1 + k2m2r

2
1

2
φ̇

2

1 + (R1 cos θ + k2r1)m2r φ̇1 θ̇ +
1 + k2

2
m2r

2 θ̇
2
, (11)

and the conserved canonical momentum is,

pφ1
=

∂T

∂φ̇1

= {[(1 + k1)m1 + m2]R
2
1 + k2m2r

2
1}φ̇1 + (R1 cos θ + k2r1)m2rθ̇. (12)

The total horizontal momentum of the system is, using the rolling constraint (1),

Px = (m1 + m2)ẋ1 + m2r cos θ θ̇ = (m1 + m2)R1φ̇1 + m2r cos θ θ̇, (13)

while the angular momentum of the cylinder 1 about its axis is,

L1 = k1m1R
2
1φ̇1, (14)

and that of cylinder 2 about its axis is, using the constraint (2),

L2 = k2m2r
2
2(φ̇2 − θ̇) = k2m2r2(R1φ̇1 + rθ̇). (15)

Hence, the conserved canonical momentum (12) can be written as,

pφ1
= R1Px + L1 +

r1

r2
L2. (16)

Equation (12) for the constant pφ1
can be rewritten as,

φ̇1 = ω0 − (R1 cos θ + k2r1)m2r

[(1 + k1)m1 + m2]R2
1 + k2m2r2

1

θ̇ = ω0 − Ar(R1 cos θ + k2r1) θ̇, (17)

φ̈1 = −Ar
[
(R1 cos θ + k2r1) θ̈ − R1 sin θ θ̇

2
]
, (18)

where A =
m2

[(1 + k1)m1 + m2]R
2
1 + k2m2r

2
1

. (19)

Equation (17) integrates to give, for θ0(t = 0) = 0,

φ1 = ω0t − Ar(R1 sin θ + k2r1 θ). (20)

The total energy E = T + V can now be rewritten (for nonzero θ0) as2,3

2E

m2r2
=

ω2
0

Ar2
+

[
1 + k2 − A(R1 cos θ + k2r1)

2
]
θ̇

2
+ 2

g

r
(cos θ0 − cos θ) =

ω2
0

Ar2
. (21)

2The result (21) agrees with eq. (8.5.7) of [5], noting that the notation there corresponds to M = m1,
m = m2, k1 = k2 = 1, a = r2, b = R1 = r1, c = b − a = r1 − r2, ϕ = θ, α = θ0 and ω0 = 0.

3A variant is considered in sec. 66(ii) of [6] in which the outer, thin cylinder rotates freely about a fixed
axis. For this, we set x1 = 0, ω0 = 0, r1 = R1, r = R1 − r2, k1 = 1 and k2 = 1/2 in the above. Then, the
energy equation (21) becomes, 2E/m2r

2 = θ̇
2
(3m1 + 2)/(2m1 + m2) + 2gr(cos θ0 − cos θ) = 0, as in [6].
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2.1 Steady Rolling

A particular solution is that θ is constant, say θ0 with |θ0| < π/2, while φ1 = ω0t, in which
case φ2 = r1(ω0t + θ0)/r2 according to the rolling constraint (2). Here, the two cylinders roll
together, with the center of cylinder 2 at fixed angle θ0 to the vertical with respect to the
center of cylinder 1.

The angular velocity in the lab frame of the outer cylinder is ω1 = φ̇1 = ω0, while that
the inner cylinder is ω2 = φ̇2 − θ̇ = r1 ω0/r2 (> ω1).

2.2 Small Oscillations of the Inner Cylinder

We recall that the energy equation for a simple pendulum of length l, which oscillates about

θ0 = 0 at angular frequency ω =
√

g/l (for small oscillations), is θ̇
2

= 2g(cos θ−1)/l. Hence,
we infer from eq. (21) that the small oscillations of the two cylinders are about θ0 = 0,4 with
angular frequency,5,6,7

ω2 =
g

r[1 + k2 − A(R1 + k2r1)2]
. (25)

In addition, the entire system can be moving in the x-direction with average velocity vx =
ω0R1, while the outer cylinder rotates with average angular velocity ω0.

4If the inner cylinder can slide on the outer cylinder, there exist oscillatory solutions for nonzero θ0 [7].
5Since A(R1 + k2r1)2 ≤ 1 according to eq. (19), ω2 cannot be negative.
6Animations of the case where cylinder 1 has a fixed axis are available at

http://demonstrations.wolfram.com/SolidCylinderRollingInATurnableHollowCylinder/
http://demonstrations.wolfram.com/DiskRollingInsideARotatingRing/

7Another method to deduce the angular frequency ω of small oscillations of the system about the stable
solution is to write the small oscillation in angle θ as,

θ(t) = θ0 + ε sin ωt, θ̇ = εω cos θ, (22)

and consider the constant energy E to second order in ε, requiring that the terms in ε2 cos2 ωt sum to zero.
For this we need the relation,

cos θ ≈ cos θ0

(
1 − ε2 sin2 ωt

2

)
− ε sin θ0 sin ωt

= cos θ0

(
1 − ε2(1 − cos2 ωt)

2

)
− ε sin θ0 sin ωt, (23)

Then, the energy (21) of the system is given approximately by,

2E

m2r2
≈ ω2

0

Ar2
+ ε2ω2

[
1 + k2 − A(R1 cos θ + k2r1)2

]
cos2 ωt

+ε2
g

r
cos θ0(1 − cos2 ωt) + 2ε

g

r
sin θ0 sin ωt. (24)

The term in ε sin ωt must be zero, which implies that the oscillations can only be about θ0 = 0, as anticipated
above. That is, the formal solution for steady motion with nonzero, constant θ0 is unstable unless θ0 = 0.

Finally, setting the terms in cos2 ωt to zero, we find the angular frequency ω of small oscillations to be
that given in eq. (25).
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In the limit that m1 � m2 the outer cylinder is not perturbed by the oscillation of the
inner cylinder, A → 0, φ1 → ω0t, and,

ω2 → g

r(1 + k2)
(m1 � m2), (26)

as can readily be verified by a more elementary analysis.

2.3 Angle of Separation

The above analysis holds only so long as the two cylinders remain in contact, and the normal
force N12 between the cylinders is nonzero. For a method that does not use the forces to find
the angle θs at which the cylinders separate,8 we go to the accelerated frame of the lower
sphere, in which there appears to be an effective acceleration due to “gravity” of,

geff = −ẍ1 x̂− g ŷ = −R1φ̈1 x̂ − g ŷ. (27)

Cylinder 2 loses contact with cylinder 1 when the component of geff along the line of
centers, r̂ = (− sin θ, cos θ), of the cylinders equals the instantaneous radial acceleration,

rθ̇
2
. That is, separation occurs at angle θs where,

rθ̇
2

s = r̂ · geff = −g cos θs + R1 sin θs φ̈1

= −g cos θs − rR1A sin θs

[
(R1 cos θs + r1k2) θ̈s −R1 sin θs θ̇

2

s

]
, (28)

using eq. (18).

2.4 Looping the Loop

Motion is possible in which the inner cylinder “loops the loop”, reaching θ = 180◦, provided,

θ̇
2

top ≥ g

r
, (29)

when the point of contact of the inner cylinder is at the top of the outer one.
For motion with θ0 = 0, the energy relation (21), together with eq. (25), tell us that,

[
1 + k2 − A(R1 + k2r1)

2
]
θ̇

2

0 =
θ̇

2

0

ω2

g

r
=

[
1 + k2 − A(k2r1 − R1)

2
]
θ̇

2

top +
4g

r
. (30)

The condition (29) for looping the loop is then,

θ̇
2

0 ≥
[
5 + k2 −A(R1 − k2r1)

2
]
ω2 =

5 + k2 − A(R1 − k2r1)
2

1 + k2 −A(R1 + k2r1)2

g

r
. (31)

In the limit that m1 � m2, for which A → 0, this becomes,

θ̇
2

0 ≥ (5 + k2)ω
2 =

5 + k2

1 + k2

g

r
(m1 � m2), (32)

so that for k2 = 0, corresponding to a point mass sliding inside the outer cylinder,

θ̇
2

0 ≥
5g

r
(m1 � m2, k2 = 0) . (33)

8For a discussion of the angle of separation based on forces, see [1].
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