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" 1. Spinning Basketballs
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The constraint dndition of rolling wihtout slipping can be written as

3 dxA =0 W
From the geometry of this problem, the velocity vector and the angular velocity vector

can be written as
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The force and torque equations are given by,
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where we used the spherical symmetry to reduce ps
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The similar calculations give
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If =0 and &= , (4) reduces to _
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whereas (5) vanishes identically. The condition for the existance of the real solutions
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The normal component of force exerted by the sphere can be calculated as follows.
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Thus, A+ F20 is equivalent to
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Now we consider the nutation about the steady precession. We set

O=0o+€st , ¥ SRt aank

and we introduce
cx—*L R

p= CTAWa®) T . 2= kgo/I
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zeroth order equation and two first order equations in amplitudes ( € andd ). Then,
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We iwrlte equations (7) and (8) in matrix form
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where we used (6} in right-akdn-side of the above calculations. Thus,
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The Golfer's Nemesis
The force equation and torque equation are
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respectively. By combining these two equations, we get,
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The angular velo-:nty vector can be written as,
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where the first term represents the rolling wibkhout 5;‘% ,‘}
slipping. By the direct differentiation, we get
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Since :the velocity vector can be written as,
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Plugglng these equations into the combined equation, we get
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(1) can be directly integrated to glve
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where we used the given boundary conditions at t=0. Putting this into (2), we get,
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The solution of this equation can be written as,
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For sphere, 1= 2ao*. Thus,
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which means the ball rises again to the rim after 1.87 revolution.




Off the Rim : s
Since there is no component 1 of angular velocity :

W

vector by assumption, the angqular velocity vector can
be written as,
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where the first term represents the projection of
‘angular rotation along the rim'into axis 2 and the .

second term represents the rolling without slipping acese = X
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the basket. Thus, the rotational kinetic energy can be written as,
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The kinetic energy of CM motion is clearly given by
La : é_ mla?sue s * 4 (L—q S8y s )
with. the potential energy
= WA &S50
where we used a constraint,
2= A ole
Thus, the total Lagrangian can be written as, ' {
L= %T_é‘ + %Mﬁﬁs‘eéz + %icb—asme)ﬁ -(;—'f;; kb s gine P — gaceSd
w‘thh asserts that the effective potential is,
l/q,qfxay)— %a&o;& el -Z‘_:_?.L. (h—asined*g }
By the direct differentiation, we get, CT* ?Ha"‘,m <his -&fue> L
V@F.C o = -glo\sfha + £ b—asng) & wwto £ =

'[ _ 3g tes R

&l —asinG)
Further dlfferentlatlon shows . that

J6r Ue,,ﬁ,ﬁ = IwC 4& a0 4 {Agf (g b-asing) ¥ "'53 (— Feouo > @JS)&O
(- cwso51 Aor ©L£OL T
That;;means our equilibrium is unstable. Intuitively, if {22552, then the ball will
leaveiz the hoop abd if ‘Q_C.ﬂ.gg_‘ . the ball will fall into the basket.
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(a) From the right figure, we see that
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The Lagrangian can be written as as,
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since there is no additional potential. One thing
which simplifies the calculation is that the second term {which corresponds to Coriolis
force term) is a total derivative of time. Thus, in calculation of the equation of
motien, we can neglect the term. Thus,
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Since there is no explicit time dependence, we have
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(c) In rotating coordinate system, there are Coriolis force and centrifutggal force.

Slnce the motion is purely angular, the centrifugal force should be radial which would
be cempensated by the constraint force. The same fact holds for the radial component of
cent#ifugal force. Thus, retaining only the tangential component of the centrifugal
force gives,
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The Piano }
From the note (p.230), we have the formula
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Since our force is given by

-+
T oup: { T dcx-Ly s/ 7 o<k <2
0 o—d/&-uife
F would ‘be given by
T = liiwq"‘“bswtraﬁc o<t Th
S o D'cb“"—b?‘l Je
Thus, for the time t > Eiz , we have e
T/ n
Bogy = pmc SudE2 sin 228 T A P i
- T wnld _
— {’Enc st So sing st (Po—otghy I
where we introduced the rescaled parameters,
2RYr nRek | NET o 0
T -2 @ .20
Since,

!I

[T siugp suld, ~x £)0¢

=3 ( = [y
=7 ‘0'(“!' LY Stude) o
- L2 el .
S = = = T s ),cm (A, — =
qu pgacomes S ' 2P = g%&ca;ﬂ:_cl
PATFT wnl ¢ ) ) g(_,( = . S A7
Sﬁh = {}7}}/\5 \hf— s ( }lho;éo —) LV i gy Z(P T o |— Cpu:"{')l)
if we. choose b = 1/2 , then the above equation becomes, Ce*=T7P ., 717 : Few sioh)

- 2—1’—'2 . Sthnit 706 nr
SLHKI= FaSale 04 2; nl—ha) Sth- 5"4*3?_“ (*"‘%73

The above formula gives no contributlon except for the case when n=1.
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(a) We assume that the tension is approximately
the constant, as usual. Then, the configuration T T
)
shown to the right indicates the equation of e F
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motion,
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Since the angle £ is very small, we can approximate this as,
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i. 914%%- =o , This condition reduces to

aR =Kt = . = amE
>z =" = =
and M does not move as shown in (4}.

t

iii The remaining condition can be reduced into
e 2T el -
”'z:%:._ ) ) ;:,c, Me = hA M

anr]‘j in this case M does move. (-: g.m to)

1
'
i




(d) we conSJ.der the second condltlon. By writing,
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Clearly, since the functlon is eﬂﬁan function, there can not be any Lsine terms.
Addltlonally, there is no constant term since the average of the above function is zero.
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From the Young's law, the force at a certain point of spring is given by
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Thus, the equation of motion becomes '
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where p= w/0, , the density of the bar which is assumed to be a constant. The solution
of the above equation can be written as,
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We put {2} into this equation and get,
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