PH 205, THE SOLUTION SET FOR PROBLFM SET 6

. a) Kepler's Equation of Time:
From the right figure we get the relation,
Q¢ + teos tllo—8) = aa '
Putting the orbit equation
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into the above equation yields
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Inverting above equation, we get
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wWe differentiate above equation to get
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which can be obtained from (1). Now, combing orbit equation and (1), we solve r2 to get,
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Consequently,
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where we define,
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From the properties of an ellipse, we know,
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From the constancy of the angular momentum, we get
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where we used the geometrical fact that the area of an ellipse isV From the note
we get
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Combining these results, we get
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b) From the law of sine applied to the right figure, we
get, _ - r
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Using sinle~@): sMbang — sinf b the above equation imme-

diately becomes,
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We differentiate both sides with respect to time and get,
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From the equation,
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we f£find that (2) can be written in the form
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where (ce*) represents the second order in ¢® which is assumed to be small Also from

the orbit equation, we find that
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Thus (3) can be rewritten as,
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The above equation shows that ?S is a constant upto the first order in €.

Spin-Orbit Coupling

Referring to the right figure which shows the
configuration about the center of mass, we can )

write down the total angular momentum as follows.
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From the Newton's law,
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we can rewrite (1) in the form
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The total energy consists of the kinetic energy and the gravitational potential energy.

That is, Sl1k
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where we used Newton's law once. Comparing the above equation with (1), we conclude
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As suggested in the problem, we introduce a variable x,
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In this variable E and L can be written as
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During the tidal friction, we can assume that L is a constant. (It is a direct
consequence of the fact that gravitational interaction is purely a central one.) Thus,

we cén express E iH{erms of the constant L as follows.

I T f

This looks equivalent to the one-dimensional potential problem. The equilibrium state

would be such that 3 g ;. o2
dE. o © - % .‘.—%- z-ntwe -5 g t ) =o
For simplicity we assume L.>= ; o=, and >0 . From the above equation, we find that
once equilibrium exists, it'yill pe the case when w=.0. . From the figure below, we
see that t?e solution of the above equation actually exists only if the minimum value
ofé + ')%7 is less than —Lz:' . Since the
minimum value of former can be obtained as
follows, , '
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one condition we should require for the

initial condition is, N :
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Clearly, if this condition does not hold,

the total.is monotonic increasing function

“Shery
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with no equilibrium at all. Under the condition, the graph of the energy becomes as

shown below. (Notice that this form is E
nearly determined by the previous graph.}
Since the energy should decrease all the o
time, if we additionally require that //?“\\L
X, € Xwitiad 7 X

where Xi is the smaller root of the »
_i_([:_ = o equation, existence of which is
guaranteed from the first condition.

Thus, under these two conditions in initial
values, we can be sure that there would be a stable equilibrium with .

In egrih-moon system, L7° fl?e , and wr do hold. And R can be written as,

R = (e Ly -z




where we used Newton's law. By the direct differentiation, we find that, (
% = oL ((Gratmdd? b C(L- 1D KO (ot hat e 503
which tells us that R increases as AL decreases.

Skyhook

We apply the force balancing to the infinitesmal p A veod
element of rope shown right. Then, we get, Cp:weirdeacibyd _ g = conerifugod fore
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Using the boundary condition, T(n.)=0 and T(hG)=0, we can integrate above equation and
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The condition T(Vu, }=0, now, gives,
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Above quadratic equation is easily solved to give {
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where we choose only positive solution. The effective potential of this problem can

be written as, s M
Uk = ) (~ fF—ﬁ-o\r - .1_{ priw Ddr ( assuming ho coilingl)

where A is a constant denoting the length of the rope. (Notice the minus sign in
centrifugal term! One should construct effective potential from L = T - V rather than

H=7T+V) We differentiate twice the above expression to get,
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which is clearly negative. Thus, the rope is unstable.

commént. We could have used virial theorem. In this case, we first evaluate the total
eneré;y and find that it is positive. According to the virial theorem the value should
be négative. Thus, this contradiction leads us to the conclusion that the motion is
unbounded. This is exactly the same as the assertion that the rope is unstable.



4. a) Modelling

Since we use the same material, the density should not be changed. Thus,
W, ook
Pl=Pr3nt WP
from which we conclude that =‘z«’w. From the invariance of Newton's law, we get

1., 9%, - I 42
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If the gravitation is 1nvolved in our consideration, the gravitational force will be
rescaled as,

’=uﬁq‘-a3mg=o{3&‘ - :
(cf. Notlce that one should not use F= V-.-ﬁ._:.'-..‘u ~ In modelling we are dealing with the
phenomena occuring near the surface of the earth. If we rescale using the latter, we
are performing astronomical ‘simulation!) Since all other forces should be rescaled the

same way, we get,
9(3::0(4?_1 = Q:W 1 é
For a given v', the corresponding v is VL = %‘U' . If gravity is involved, we get

V= fﬁ\)'= V! due to (1). Given the form

{ - Fekota%
, the force should transform like
Plo bo't prdz P28 p7F F § p22

which should be equated with a¥g~*F . Thus, we get P-ﬂ-,qu! from ptrf=4 vV . If
we assume that gravity should be included all the time {(which is not necessary in some

effectively 2-dimensional case with no vertical motion), we get one relation,

_?__3-:'.
3—+%3

(b} From the force law,
=Y

F =-AF—VT
we find the dimension of A and B.
6{,..;” Twads 1T Clme1™ " y AinR = r,h.u:\:ﬂ“-'i"’

Since the particle was initially at rest, the resulting motion is one dimensional. Thus,
the time to reach the origin is

rek(m, AB )
Since the motion is one dimengional, there can be no dimensionless directional dependence.
Furthermore, since the only parameter which has the dimension of length is the initial
position, there can not be any dimensionless parameter containing it. Since the dimensior
of function is time, there is no way of appearing of the initial position since there is
no counter term having inverse length dimension. Thus, the time is independent of initial

position.



8.

(c) From the force law,
—

T A0

we find the dimension of the constant A is, TW1 ca1e£1"" since the initial speed is

zero, the time can be a function of only A, m, and R. Thus, we set,
T A"wf‘ R”

The dimensionality consideration gives us, At
| X4Bwo, ez, =i y4 DK =0 W ¥z T3

Yo T RQ\"H)/J-

Bio-Mechanics

(a) We can assume that the animal dies if it loses some portion of its water. The initial
amount of water contained in the animal is proportional to L3. Since it loses water
through sweating, the loss of water ﬁer unit time should proportional to L2. Thus, the
living time should proportional to L.

(b} Their production of power accompanies the sweating which is proportiona to surface

area, i.e., L2 Thus, the power should be proportional to Lz.

' (c) If the air resistance is the Iimit, the power should be balanced with the resistance

force times speed. Since the power is proportional to L2 and the air resistance is aﬂ

proportional to L2, two factor cancel out. Thus, the speed is independent of L.

1f the gravity is the limit, the power should be balanced with the gravitational force
time speed, where gravitational force is proportional to L3 if we assume the density of
animals are approximately the same. Thus, the speed is proportlonal to L 1

(d))ﬁgﬁe radius of bone is L, the area of bone which is proportional to maximum force
which should be produced in the process of jumping is proportional to L2. Thus, the
amount of the work done by the force is proportional to force timef body length, i.e., L3.
Slnce the gravitational potential energy is mgh where m is proportional to L3, the
factor L3 in both sides cancels. Thus, the height is independent of L.

+

(a} ﬁe congider the scattering of BBs from a steel ball in their center of mass frame.
As 1s well-known, in the center of mass frame, the steel ball moves in one direction
before the collision and moves into the opposite direction with the same speed. Thus,
durlng the collision process it momentarily stops. Thus, the scattering of BBs saticfies
the property that the incident angle is same as the reflecting angle . Thus, from the
figure in the next page, we get,

b= g | = n-2¥ (,

Combining two egautions,

bz geox
4& z



Thus, s?
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{b) let us consider the elastic scattering process.
The number of particles which is deflected into
solid angle 4 is given by

o

A

a0
where n is the number of bombarding BBs per unit
area. As shown in the figure they trnasfer momentum along the direction of incidence

Ty e O)
From the spherical symmetry, other components of momentum transfer vanish. Thus, the

total momentum transfer is, . Rz " ‘
{n % WU (b of®) AN = pemys =t 1R L (- tmso) 5B d 0
= [ tam (mx2drt =2 with = €00
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= n (7t R my,

-

which is clearly same as the momentum transfer by the complete inelastic process. Since
the incident direction can vary randomly, this calculation imples that the avérage drag
force caused by elastic scattering is same as the average drag force caused by inelastic
scattering.

{c) This problem is bedilfully explained in section 17 of Landau and Lifshitz.

According to their equation (17.5) of page 46,
¢ L\ . e
- sin 2,
U (M ) Z
where y,’ represents the speed of the steel ball-after collision.From the energy

conservation,
A Twst = & Teaw
and, since the steel ball was initially at rest, its final kinetic energy is,
TGA\A:' —*-“——-";-Mmaua L
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Thus, by the direct differentiation, we get,

4%%?1 = 2% fine 369“ —L'T;“*
where .Thﬁﬁ‘ér * which is easily seen from (1) since the angle can be any angle between
0 and 180. Consequently,
T AL (JTM)"‘ L A= 2R
s R P
d Tt el Trnax

Clearly, Tu, = 0 when B':c .

comment., Especially when you solve homework problems, it is not advisable to gquote
the results as I did. My intention was to give you more clear explanations which can be
found in Landau's book. 11

(_S‘CZ Pt commnt of \)YDUW u ,F,,. 5—,9‘,‘ PRI 7 of al_?:')
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g

{
{(a) These two problems can be solved easily using elementary method. First assume that

moon is a point particle with the same mass. Then the distance of closest approach
can be calculated from conservations laws. From the angular momentum- conservation,
we have Ck: impact povameter, Uo . gpeed at nfinity)

L= mVeb = VA Pl V E e )
where we used the fact that there is no radial motion at the moment when the closest
approach is achieved. Energy conservation gives,

Twwo® = '?L?ﬁ%‘"—_ + ._;f:wu‘cv‘-m) '
where 7~ = 1 represents repulsive interaction and p~ = -1 represents attractive
interaction. Combining these two equation gives,

b = Fu® — 0 Ul /U? Mo Dt
where we defind escape velocity .ielj;¢.= %%?‘ . Clearly, the maximum impact parameter
is obtained when we set Vi.»¥, , the radius of the moon. Thus, the total cross-section
for collision is, (Of course, for smaller impact parameter, the particle will hit the

moon. }

-

2
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(b} Using L=wVob, the effective potential can be written '

as, + intinl eherg/
— C L - C b‘l. 1 2
Vets = — 3 + J_mra.”-ra“";.—:E" (Fom Swu’ ) v

where the graph of which is shown right. if particle's

initial energy E. is larger than the maximum height
of the potential then the particle will be captured. The maximum height of potential
is obtained by requiring,

t 2 4t

) AT L e R L Fe EE
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Thus,.

' w{' i
gives maximum impact parameter Lﬁﬁ*=~(f%;‘) . For a smaller impact paramer, the
particle will be captured. Thus, the total cross section is, '

rs
e Ak, = n(.‘éc_)'n
o



11. From the equation of motion, we have,r (radial component)

P = n%; Ucr)

from which, we get, L P!
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Usmg the angular momentum conservation,
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In this case, we set \)a—)s ?‘:; . Then,
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Consequently, we have,—— ~  ° 2 LAY (-8
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Thus, the differential cross section is given by,

Jo gkl L gy a2t mxoe)
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The corresponding graph is,
H

ia

45
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Notice that it is a monotonic decreasing function of & and diverges at 6=,

comment. Although it is not clear from the notes, we define the differential cross
section as a positive number such that it can be proportional to the number of
scattered particles with, of course, positive proportionality coefficient. Thus , all

you have to do is to make the final answer positive by putting arbit};‘y sign, brutally.
e





