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1. {a) The forces concerned in this problem are (In rotating frame) the centrifugal force
and the force along the CM-center-of-tube line which originates from the spring.
Since the number of forces concerned is only two, they should lie parallel to each
other, otherwise there can be no eguilibrium at all. Furthermore, s%&ce the spring
force is proportional to the stretched distance and the centrifugal foce is proportional
to the stretched distance (Plus or minus a, of cource) and the rotation frequency
ig very high comparing tofk7M, the CM position should be on éhe spring to reduce the
magnitude of centrifugal force, Thus, the equilibrium point should be at &=o¢ , and
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(comment. Notice that r-a is positive. Some students get two solutions for radial

posiiions. However, it is easy to show that two positions are basically the same.)

‘v I+ rhe angle variable is fixed, (this necessarily means the introduction of
other fictitious force in angular divection. Thus, considering the angular direction
withosi the consideration of the fictitious force is meaningless.) the effective potentia
can bz written as,
veH - Lo Lmatar-at = S oS- N2yty 24 D56+ o202 ’}
Clearly, the spring constant is negative, which means the motion is unstable.
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(c) in general case, there are forces from various origins. As a consequence of

both spring and the constraint force which is responsible for the constancy of "a",
{asswning there is a rod between CM and the center of the tube is a convenient way of
thinking) there is a force,
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Jiere the coordinates are shown right. r component
of this force is determined by the spring and F A’

component is determined by the reguirement that
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the true force on CM lies along the line connecting

CM and center of the tube. The centrifugal force is
glven by
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and thr Coriclis Force is given by
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where oné should be cautious about the sign convention. Thus, the total equation is
given by (-For swall oscillation.)
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Since we are considering small oscillation, we set Y=
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and assume & is small.

Then the eguations of motion become
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Sinoe ._"’_E; is very small, we consider only up to leading order in "q3 . Then,
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We set ¥yz Aet*and ae=Be;w'} then see if there exist real roots for «2. After the
substitution, above equations yield,
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Since the determinant of the above matrix should vanish, we have,

Qw"*mﬂwo))gw 2 o)) =4 N T B Lot nEe wets) (ot ent -vw;‘w) =
whicl =hwzes that d:::ﬁa"solmlons are,

P S A J.ﬁ_‘l '.'!:’Loo.é-

5

-
-

Since tnese solutions are all real, we can assert that the resulting motion is stable.

One thing we should notice here is that without the off-diagonal terms {Coriolis force}

there can not be any stable motion. The approximate sketches are shown below.
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comment., After some approximations, we can

One can use Lagrangian method here.
show that the Lagrangian can be written as,
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Try to derive this result!



(a) From the symmetry of the disk, it is clear that the two mutually perpendicular
symmetry axes should be on the plane of the disk and one additional axis should lie
along the line perpendicular to the disk, as 3\

shown right. Using perpendicular axis theorem,

the principal moments of inertia are
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Notice that these axes are rotating with the
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disk. Since w can be decomposed into
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the angular momentum of the disk is given by y;
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Decomssine U, into the coordinates shown right : 5 3
which ‘s 4130 rotating, we have ; [ g
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{b) Now we consider the fixed frame x-4-& which coincides with Xi"d-ar at t=0."

One easy way of understanding the motions of the pistons is to imagine the disk

is fixed and the pistons are rotating in an opposite sense. {suggested by H. Chan)

Bearing this fact on mind, it is obvious that,
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Thus,
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where we refer to the above figure. Consequently,
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We sce that these motions are simple harmonic motion. Above results immediately give
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The angular momentum of the di sk in the direction perpendicular to the shaft is,

t‘ztiMRz“’H“O‘) W{o!g"-f- (-&Mn—“wwmx*ﬁ““g’)‘-’ -é—MR’-wﬁfnb{ lo$ ol 9/ )
¢ >

.

From {1} and (2}, we find that if
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then, the engine will be balanced.
§
{a) [After the initial impulse, the angular momentum should be conserved since there is
no external torque. The initial angular momentum is '
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where we used the inertia tensor
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The ~ctual motion would be precession about L as shown

righv. MTws, the angle between axis 3 and L is less
4% .0 .are face of the coin is always exposed to
ooovoan sz, Thus,
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yhat aeans the minimum ratio is 1/2.

{b) After the impulse, the angular momentum becomes A
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by meteorite, where we used the coordinate system

L

shown tc rhe right. The above result can be written as
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which shows that the instantaneous angular velocity vector is
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Conwocouently the angle between this vector and axis 3 is,
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(¢} tirom component 1 of Fuler's eguation, we_have
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which car be easily integrated to yield
W, = WPy, @(Y(-_ »—%-&) 5 expoltentis decreading!
Component. 2 and component 3 of Euler's equation are
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4. {a) Since there is no impulse-type torque about
point P, angular momentum about P should be
contimous, Before the fixture, the angular
momentum_}s
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where we used the fact that the moment of inertia
of sphere is :‘;L-Md"v#ﬁaﬁejjis the initial angular
momentum. As explained in p.203 of Goldstein, the parallel axis theorem states that

the inertia tensor becomes
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Soror che ceordiante translation zlong 'Q . Hereéf denotes identity matrix. If we use

1.2+ covainate system as showr above, Lhe inertia tensor for this coordinate system
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according to the theorem., Thus, final angular momentum can be written as,

’ & 2
AT SR> -_-—"gé_‘(z.w( S 40w s+ w0l )

e to ke continuity of the angular momentum, {1) and {2) should be the same. I1f we
use the Jecomposition, '
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n 1-»-1' coordinates, we get,
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The direction is denoted in the above figure,
{comirent.. Although the calculation involved is a bit complicated, sd solving tnis problem

A
using"CM wotion + rotation about CM concept is more pedagogical.)

(b} The coordinate of the point Q in 1-2-3 coordiante is

(-0, G, ,0)
tues, its ppeed  is given by
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rs
1f cod® > 7;: 5it® , the direction is into the page and otherwise, it's ouf ofthe page.
{c) The velocity of the CM after the fixture is given by
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Thus, the reguired impulse is
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since the initial velocity of CM is 0. The direction is out of page, which is obvious.
(3} e first component (component 1) of q_;/represents the spin of the sphere about
axis 1, which requires no external force. The component 2 of i represents the rotation
of the sphere about axis 2. It needs centripetal force,
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The direction of the force is directly from CM toward P



5. (a) .'I‘he contact point should momentarily stop. Llﬁﬁ
Thus, we should have, . \
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() If we measure tcl)rque from CM, 1‘:he normal b . ‘?‘/ g oriea)
force and the centripetal force which is Lt «— fovee
responsible for circular motion can contribute ‘f'\_li-ﬂ':'
to it. Referring to the right figure, and ) ’ “"‘"""Yem) ke

consideréng the fact that the wheel is in equilibrium vertically, we have
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(c) We chserve in lab frame. In this frame, A remains constant while «» is
cotatiin J*»h an angu}aL velo'*lt:) n . Thus,
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ere e w3 the result of (b)) for Ny. Dsing the result of ({a) to deleyte«w , we
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(1) In tni= case we cpasider the same 1-2-3 coordinate system, but we also assume that
_ - L Coprdivates, o . :
there is no «o rotation. After the same decomposition as (c), we get
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6.

3 » . a
(a) Referring to the right figure, the rolling without S
slipping condition is ' na
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where <o is the spinning frequency. Thus, the total 3
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angular velocity can he written as, rrT
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As expected, the total rotation is the totation about the
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instantaneous axis which corresponds to -3 . In lab frame this axis 1is rotating
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with angular velocity Ji . Thus, the time derivative of the angular momentum
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3 A the contact point noves with the angular velocity L, the figure moves forward

b LAk quring the time dt. Whereas,due to the rolling, the figure should roll

bar  Lv (o 4k during the same time. Thus, the precession freguency of the figure
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s, 3 eing one revolution time T which is defined by «@T = 2& | the face moves
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