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The reason that faculty teach courses is so that they can learn from the students.

— J.A. Wheeler
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Physics of Quantum Computation

Such was the title of the course.

http://kirkmcd.princeton.edu/examples/ph410problems.pdf

The bulk of the course was an extended exercise in linear algebra.

Where’s the physics?

“Quantum information is just elementary quantum mechanics pushed a few steps

further.” — C.A. Fuchs

Is there any NEW physics in quantum information?

Remediations:

Quantum mechanics is not just partial differential equations.

Pauli spin matrices are examples of rotation matrices.

Classical optics = quantum mechanics of single photons; quantum optics = · · ·
Measurement takes time; measurement requires entanglement.

Entanglement is an essential difference between classical and quantum systems.

(H is not Planck’s constant, and is not the Hamiltonian, but is the Hadamard transformation.)
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“It from Bit” — J.A. Wheeler

The conjecture is that the quantum Universe may be better understood as an

information processing system than as a mechanical system.
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Any Quantum Process is a Computation

Unitary time evolution, |After(t)〉 = U(t, t′)|Before(t′)〉, is a quantum computation.

But what does it compute? (to paraphrase Spock) [Why the quantum? — J.A. Wheeler]

The “result” of most quantum computations is to provide such stability over time as

is observed in the Universe.

There is no stability in the classical Universe. — S. Earnshaw (1839)

The stability of atoms is a quantum phenomenon. — N. Bohr (1913), E.H. Lieb (1976)

How are stable records of measurements produced? — J. von Neumann (1932),

W.H. Zurek (1981) 1. Entangle. 2. Separate. 3. Project. (ESP)

Entanglement is tricky: Joint information is not localized.

(Coefficients α and β of α|0〉A|0〉B + β|1〉A|1〉B are NOT a property of either A or B.)

— A. Einstein, B. Podolsky, N. Rosen (1935)

Why don’t we observe “cat” states, α|0〉 + β|1〉, α|0〉A|0〉B + β|1〉A|1〉B, etc., more often in

Nature? — E. Schrödinger (1935)

The physics challenge of quantum computation is to trick Nature into being “really

quantum”, whereas left to itself Nature uses quantum computation to make the

Universe appear “classical”.
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Theory Reinforces the Interest in Algorithmic Quantum Computation

Information is physical. — R. Landauer (1961)

Computation is reversible, except for erasure. — C.H. Bennett (1973)

An unknown quantum state cannot be copied exactly.

— D. Dieks, M.L. Hardies, P.W. Milonni, W.K. Wootters, W.H. Zurek (1982)

Classical computations can be performed by quantum devices.

— P. Benioff, R.P. Feynman (1982)

Quantum “parallelism” permits (some) quantum computations to be shorter than

their classical versions. — D. Deutsch (1985), P. Shor (1994), L. Grover (1997)

Uf |x〉|y〉 = |x〉|y ⊕ f (x)〉 ⇒ Uf
|0〉 + |1〉√

2

|0〉 − |1〉√
2

=
(−1)f(0)|0〉 + (−1)f(1)|1〉√

2

|0〉 − |1〉√
2

Classical error-correction procedures are readily generalized to quantum

computations. — P. Shor (1995)

This kind of theory, which takes elementary quantum mechanics a few steps further,

gives much encouragement that, but little/no guidance as to how, long-lived “cat”

states and algorithmic quantum computation can be realized in practice.

The challenge of such realization is now almost purely experimental.

One Bit, Two It, Three I(nfinity) — Gamow-Wheeler
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