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1 Problem

According to Faraday and Maxwell, the electromagnetic field stores energy and momentum.
The flow of energy associated with electric and magnetic fields E and H was quantified by
Poynting [1] in terms of the vector,

S = E ×H, (1)

in SI units, whose magnitude is the energy crossing unit area perpendicular to S per unit
time.

Poynting discussed the flow of energy from a battery to a resistive loop of wire. As shown
in his figure below, the power does not flow down the wire of the loop, but rather it flows
through the air/vacuum along lines of the vector S and enters the wire at right angles to its
surface.1

Discuss the flow of power in an electromechanical power supply, as sketched below.

1A more detailed discussion of power flow in a DC current loop is given in [2].
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A metal bar slides in the x direction along a U-shaped wire with oscillator velocity
v = v(t) x̂ = v0 cosωt x̂ through a region of uniform magnetic field,

B0 = B0 ŷ. (2)

The metal bar is aligned along the z direction, with distance l between its two points of
contact with the U-shaped wire. All materials in this example have magnetic permeability
μ0.

For an application of this type of AC generator in watches, see [3].

2 Solution

It will be difficult to give a complete analytic description of the Poynting vector throughout
the circuit, so we will content ourselves with a characterization of the energy flow across the
surface of the most relevant circuit elements.

First, we recall the well-known example2 of a cylindrical resistor of radius a, length l
and resistivity ρ. The corresponding resistance is R = ρl/πa2, so that when the resistor
carries current I along its axial direction, the power consumed is P = I2R. An axial electric
field Ez = ρJ = ρI/πa2 exists inside the resistor to drive the current, and an azimuthal
magnetic field Hφ = I/2πa exists at the surface of the resistor. The Poynting vector at
the cylindrical surface of the resistor points inward, Sr = −EzHφ = −ρI2/2π2a3. Since the
Poynting vector vanishes on the two circular ends of the resistor, the total power flowing into
the resistor via electromagnetic fields is the Poynting vector |Sr| times the surface area 2πal,
namely Pin = I2ρl/πa2 = I2R. Thus, the inward electromagnetic energy flow described by
the Poynting vector S at the surface of the resistor accounts for its I2R power consumption.

2.1 EMF and Current in the Circuit

According to Faraday’s law, the EMF E around a circuit is equal to the (negative) time rate
of change of the magnetic flux through the circuit. In the present example we find,

E(t) = v(t)lB0. (3)

If the total load resistance in the circuit is R, then a current,

I(t) = E/R =
v(t)lB0

R
, (4)

flows in the circuit, and the (instantaneous) power consumption is,

P = I2R =
E2

R
=

v2l2B2
0

R
. (5)

The total resistance R is the sum of the resistances of the four straight line segments of
the circuit. The problem is somewhat conceptually simpler if the resistance is negligible for
the two long segments on which the bar slides. That is, we approximate,

R ≈ Rload + Rbar =
ρloadl

πa2
load

+
ρl

πa2
, (6)

2For a typical textbook discussion, see Example 8.1 of [4].
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where ρ is the resistivity and a is the radius of a segment (load or sliding bar, both of length
l).

The voltage drop across the sliding bar is,

ΔV = IRbar =
Rbar

R
E , (7)

which implies that the electric field inside the sliding bar and parallel to its axis (the z-axis)
is,

E‖ =
IRbar

l
ẑ. (8)

2.2 Mechanical Power Equals Electrical Power

The current flows in the +z-direction inside the sliding bar when its velocity is in the +x-
direction. Hence, the sliding bar experiences a Lorentz force (in the lab frame),

F(t) = I(t)l ẑ × B0 = −IlB0 x̂ = −v(t)l2B2
0

R
x̂. (9)

An external force Fext = −F must be applied to keep the bar sliding with velocity v(t). The
(instantaneous) power delivered into the system by this external mechanical force is,

Pext = Fext · v =
v2l2B2

0

R
= P. (10)

That is, a lab-frame analysis indicates that the external mechanical system which drives the
sliding bar provides the power (5) that is consumed by I2R electrical heating.

We can also give an analysis in the rest frame of the sliding bar (the � frame). For this, we
suppose that the magnet which produces the field B0 is at rest in the lab frame. When this
field exerts force F on the sliding bar (in the lab frame), there is a reaction force −F on the
magnet. To keep the magnet at rest there must be an external force F′

ext = −(−F) = −Fext

on it. In the rest frame of the sliding bar, the magnet has velocity −v, so the force F′� = F′
ext

on the moving magnet must deliver power P � = F� · −v = Fext · v = P .

2.3 The Motional EMF

The argument of sec. 2.1 did not localize the source of the EMF. It often considered that the
EMF is generated in the portion of the sliding bar that is immersed in the external magnetic
field. Here, we give an analysis that supports this view.

Faraday’s law can be expressed in various forms,3

E = −dΦB

dt
= − d

dt

∫
loop

B · dArea =

∮
(v × B + E) · dl = Emotional + Efixed loop, (11)

where,

Emotional =

∮
loop

v ×B · dl, (12)

3See, for example, sec. 2.1 of [5].
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and,

Efixed loop = − ∂

∂t

∫
loop at time t

B · dArea = −
∫

loop

∂B

∂t
· dArea =

∮
loop

E · dl, (13)

using ∇× E = −∂B/∂t and Stoke’s theorem.
In the present example, where the external magnetic field B0 is independent of time,

Efixed loop = 0, and the EMF is entirely motional,

E = Emotional = vlB0, , (14)

as in eq. (3). This suggests that the sliding bar is the source of the EMF.
If so, the electromagnetic energy generated in this example should flow from the sliding

bar. That is, the integral of lab-frame Poynting vector (1) over the surface of the sliding bar
should equal the power delivered to the rest of the circuit.

To compute the lab-frame Poynting vector, we need more details as to the electromagnetic
fields at the surface of the sliding bar, which are most easily obtained by transformation of
an analysis in the rest frame of the sliding bar. So, we digress to discuss the latter frame,
and return to the lab frame in secs. 2.6-7.

2.4 Fields in the Rest Frame of the Bar

First, we consider the fields associated with the lab-frame magnetic field B0 as observed in
rest frame of the sliding bar, in which quantities are designated with the superscript �. The
speed v of the bar in the lab frame is much less than the speed of light c, so we will ignore
effects of order v2/c2, and write γ = 1/

√
1 − v2/c2 ≈ 1.

Then, the external magnetic field in the frame of the sliding bar is,

B�
0 = γB0 ≈ B0 = B0 ŷ. (15)

And, associated with the lab-frame magnetic field B0, there is an electric field,

E�
0 = γv ×B0 ≈ v × B0 = v x̂ × B0 ŷ = vB0 ẑ, (16)

in the rest frame of the sliding bar.
Next, there is the magnetic field due to the current I in the circuit. To a good approx-

imation this magnetic field is azimuthal, and independent of coordinate z inside the bar of
radius a,

B�
φ(r < a) =

μ0Ir

2πa2
φ̂. (17)

Electrons drift inside the bar with velocity v�
d = vd ẑ (which is the same as the lab-frame

drift velocity vd). The Lorentz force on a conduction electron of charge e at radius r < a in
the rest frame of the bar is,

F� = ev�
d ×B� ≈ evd ẑ × (B0 + B�

φ) = −evd

(
B0 x̂ +

μ0Ir

2πa2
r̂

)
. (18)
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For steady behavior, this tranverse force must be compensated by an equal and opposite
force. The second term in eq. (18) is a “radial pinch,” and leads to a very slight difference
in the density of electrons and lattice ions, as discussed in [6]. We neglect this tiny effect in
the following.

The first term of eq. (18) leads to a charge separation along the x-direction, until surface
charges on the wire establish the so-called is the Hall electric field [7],

E�
H ≈ −v�

d × B0 = vdB0 x̂, (19)

which counteracts the Lorentz force on the drifting, conduction electrons.4

If the bar has resistivity ρ, radius a and carries current I , then this current is driven by
a longitudinal electric field inside the bar, whose value in the rest frame of the bar is,

E�
‖ = ρJ =

ρI

πa2
ẑ, (20)

which is the same as the lab-frame field (8) when v � c.

In greater detail, the motional field (16) leads to charge accumulations on the surface of the
wire as needed to establish the longitudinal fields that drive the current. Inside the bar,
the field E�

q due to this charge accumulation opposes the motional field (16) and alters the
longitudinal field to strength (20). Hence,

E�
q = E�

‖ − E�
0 =

(
ρI

πa2
− vB0

)
ẑ. (21)

Of course, the line integral of the longitudinal electric field around the circuit remains
E = vlB0 .

2.5 Poynting Flux at the Surface of the Bar in its Rest Frame

The (instantaneous) Poynting vector, S� = E� ×B�/μ0 just inside the surface of the bar, in
its rest frame, depends on the (instantaneous) fields,

E�(r = a−) = E�
‖ + E�

H ≈ ρI

πa2
ẑ + vdB0 x̂, (22)

and,

B�(r = a−) = B�
0 + B�

φ ≈ B0 ŷ +
μ0I

2πa
φ̂. (23)

Thus,

S�(r = a−) =
(E�

‖ + E�
H × (B�

0 + B�
φ)

μ0

=
E�

‖ × B�
0

μ0

+
E�

H × B�
0

μ0

+
E�

‖ × B�
φ

μ0

+
EH × B�

φ

μ0

(24)

= − ρIB0

μ0πa2
x̂ − vdB

2
0

μ0

ŷ − ρI2

2π2a3
r̂ − vdIB0 cosφ

2πa
ẑ,

4See also [8, 9]. See [10] for a discussion of the relation between the Hall field (19) and the Lorentz force
(9) felt by the lattice ions of the sliding bar.
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noting that x̂ = cosφ r̂−sinφ φ̂. Only the third term of eq. (24) leads to net (instantaneous)
electromagnetic power flow across the surface of the sliding bar,

P �
leaving bar =

∮
bar

S · dArea = −ρlI2

πa2
= −I2Rbar. (25)

That is, (instantaneous) power I2Rbar flows into the bar in its rest frame, which power is
consumed by Joule heating of the bar.

As seen in sec. 2.2, the power dissipated in the circuit appears to be provided in the lab
frame by the mechanical forces on the sliding bar. However, the result of the analysis in
the rest frame of the sliding bar (this section) indicates that the sliding bar is a sink, rather
than a source, of power. We infer that in the rest frame of the bar, the power appears to be
provided by the forces on the magnet (which is in motion in this frame) that produces the
field B�

0.
5

2.6 Lab-Frame Electric and Magnetic Fields at the Surface of the

Sliding Bar

We new return to the lab frame, where the task now to describe, via the Poynting vector (1),
the flow of power (10) from the sliding bar through the electromagnetic field to the resistive
load. For this, we need to know the total electric field E and total magnetic field H = B/μ0

at the surface of the bar to calculate S = E× H = E ×B/μ0.
Thus far, the only fields identified in the lab frame are the external magnetic field B0,

given by eq. (2), and the axial electric field E‖ inside the sliding bar, given by (8). Other
electric and magnetic fields have been identified in the rest frame of the sliding bar, and
must be transformed to the lab frame.

Because the speed v of the sliding bar is much less than c, the magnetic field Bφ appears
in the lab frame as the magnetic field Bφ ≈ B�

φ. In the lab frame, Bφ is associated with the
electric field,6

Ev ≈ −v × B�
φ = −v × μ0I

2πa
φ̂ = −v x̂ × μ0I

2πa
(− sinφ x̂ + cosφ ŷ) = −μ0vI cos φ

2πa
ẑ. (26)

Similarly, the electric field E� = E�
‖ + E�

H at the surface of the sliding bar in its rest frame
transforms to the lab-frame electric field,

E‖ + EH ≈ E�
‖ + E�

H =
ρI

πa2
ẑ− vdB0 x̂, (27)

as well as to the lab-frame magnetic field,

Bv ≈ v/c2 × (E�
‖ + E�

H) = − ρvI

πa2c2
ŷ. (28)

The magnetic field Bv is of order 1/c2, so we ignore it in the same approximation as taking
γ to be 1.

5This is an illustration of the relativity of energy flow, also discussed in [11].
6The field Ev is also equal to −∂A/∂t, where A is the time-dependent vector potential of the moving

magnetic field, Bφ.
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The total electric field in the lab frame at the surface of the sliding bar is (neglecting
terms of order 1/c2),

E = E‖ + EH + Ev ≈ −vdB0 x̂ +

(
ρI

πa2
− μ0vI cos φ

2πa

)
ẑ, (29)

and the magnetic field is,

B ≈ B0 + Bφ ≈
(

B0 − ρvI

πa2c2

)
ŷ +

μ0I

2πa
φ̂. (30)

2.7 Poynting Vector at the Surface of the Sliding Bar in the Lab

Frame

The (instantaneous) Poynting vector of fields (29) and (30) at the surface of the sliding bar
contains four terms,

S(r = a−) =
E ×B

μ0

(31)

= −vdB0

μ0

(
B0 − ρvI

πa2c2

)
ẑ −

(
ρI

πa2
− μ0vI cosφ

2πa

) (
B0 − ρvI

πa2c2

)
x̂

μ0

−vdIB0

2πa
cosφ r̂ −

(
ρI

πa2
− μ0vI cosφ

2πa

)
I

2πa
r̂,

noting that x̂ = cos φ r̂− sin φ φ̂. We are interested in the integral of radial Poynting flux at
the surface of the bar, to which only terms even in cosφ will contribute,

S(r = a−)r,even =
vI cos2 φ

2πa

(
B0 − ρvI

πa2c2

)
− ρI2

2π2a3
, (32)

Pleaving bar =

∮
bar

S · dArea =
vlI

2

(
B0 − ρvI

πa2c2

)
− ρlI2

πa2
=

EI

2
− I2Rbar

(
1 +

v2

2c2

)
. (33)

Thus far, we have accounted for only one half of the (instantaneous) power, EI , consumed
in the circuit as emanating from the sliding bar.
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