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1 Problem

An AC voltage source is a two-terminal device that supplies (the real part of) voltage V0e
iωt

to a load across its terminals, independent of the details of the load.
Consider an AC voltage source in the absence of any load. The voltage between the

terminals is still oscillating, so there are oscillating electric fields present, which implies that
there must be some charge in motion. That is, an AC voltage source must support an
internal, oscillating current.

Since oscillating currents generate radiation, we infer that an unloaded AC voltage source
emits radiation.

(a) An idealized model of an AC voltage source in shown in the figure below.

The internal resistance of the source is zero, but a reactance exists due to the capacitor
formed by the two terminals, which are taken to be conducting spheres of radii a,
separated by a distance d � λ, where λ = 2πc/ω and c is the speed of light.

What is the capacitance C of this capacitor, accurate to order a/d?

(b) Deduce the radiation resistance Rrad of the AC voltage source, which relates the time-
average radiated power 〈P 〉 to the peak current |I0| according to,

〈P 〉 =
1

2
|I0|2 Rrad. (1)

Ignore the radiation from the wires of the source (which are largely inside a grounded
metal box), and consider the radiation as due to time-dependent charges ±q separated
by distance d.

What is the complex impedance Z = V/I of the AC voltage source, which relates the
voltage V to the internal current I?
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2 Solution

(a) The potential V due to charge q on a single conducting sphere or radius a is (in
Gaussian units),

V (r) =
q

r
, (r ≥ a). (2)

The potential difference ΔV between the sphere and a point at distance d from it is,

ΔV =
q

a
− q

d
=

q

a

(
1 − a

d

)
. (3)

If a second conducting sphere of radius a is placed at the point d, and carries charge
−q, the potential difference between the two spheres is, to accuracy a/d, simply twice
that of eq. (3),1

ΔV =
2q

a

(
1 − a

d

)
. (4)

The capacitance C of the capacitor formed by the two spheres is related by ΔV = q/C,
so that,

C =
a

2(1 − a/d)
=

a

2

(
1 +

a

d

)
, (5)

to order a/d.

(b) We consider the radiator of the AC voltage source to be the electric dipole formed by
charges ±q(t) that are separated by distance d. The dipole moment is p = qd = q0deiωt,
since the charges oscillate at the angular frequency ω of the AC voltage source.

The time-average power 〈P 〉 radiated by this oscillating electric dipole is given by a
version of Larmor’s formula,

〈P 〉 =
|p̈|2
3c3

. (6)

We first express the derivative ṗ in terms of the current I ,

ṗ = q̇d = Id = I0deiωt, (7)

where I0 is a complex number. Then,

P =
|I0|2 ω2d2

3c3
=

4π

c

π

3
|I0|2 d2

λ2 ≡ 1

2
|I0|2 Rrad. (8)

Recalling that 4π/c = 377 Ohm is the“resistance of the vacuum”, we identify the
radiation resistance Rrad of the AC voltage source as,

Rrad =
4π

c

2π

3

d2

λ2 = 790
d2

λ2 Ω. (9)

1Such computations were perhaps first made by Thomson [1]. Maxwell presented greater detail in
Art. 173 of [2]. See also sec. 5.082 of [3], and [4].

In the notation of Maxwell’s Art. 173, the charge on a conducting sphere of radius a at potential Va in
the presence of a conducting sphere of radius b at potential Vb whose center is at distance d (called c by
Maxwell) from that of sphere a is qa = qaaVa + qabVb, and similarly qb = qabVa + qbbVb. For a = b and
Va = −Vv = V/2, then q = qa = −qb = (V/2)(a + a2/d + · · ·) = CV .
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The total impedance Z of the AC voltage source is the sum of the (real) radiation
resistance (9) and the (imaginary) capacitive reactance 1/iωC with C given by eq. (5).
Thus,

Z = Rrad − i

ωC
. (10)

The radiation resistance is small for d � λ, while the reactance,

XC =
1

ωC
≈ 4π

c

λ

a
= 377

λ

a
Ω, (11)

is large. Hence, Z ≈ −i377λ/a Ohm, so that the internal current of the AC voltage
source,

I0 = V0/Z ≈ i
V0

377Ω

a

λ
, (12)

is small.

An equivalent circuit for the AC source is sketched below. Since R is small and XC is
large, these internal impedances can be ignored in applications where radiation is not
important.

3 Comments

This problem arose from considerations of how an AC voltage source in simulated in
numerical computations of antennas, such as the NEC4 program [5].

In these programs, an AC voltage source of strength V0 is modeled as a current-carrying
segment of length d that supports an electric field of magnitude E = V0/d at its center.
From the discussion in parts 1 and 2, we recognize the current to be a simulation of
the internal current of the source, which exists even when the source is not connected
to anything. The voltage, of course, represents the voltage that would be applied by
the source to the terminals located at the two ends of the segment.

NEC4 models consisting of only a single segment, which is an AC voltage source,
compute a radiation resistance equal to eq. (9) and a reactance similar, though not
quite equal, to eq. (11). In general, an AC voltage source drives a larger antenna
structure, which places an additional reactance (and additional radiation resistance)
in parallel to the internal reactance of the source. The antenna reactance is typically
much smaller than the internal reactance of the source, so that the antenna current
is insensitive to the source reactance. It is desirable, however, that the contribution
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of the AC voltage source to the radiation resistance (which adds in series with the
radiation resistance of the antenna) is well modeled, which is the case for the NEC4
program.
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