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1 Problem

Deduce a series expansion of an axially symmetric, static magnetic field in terms of its axial
field Bz(0, 0, z) in cylindrical coordinates (r, φ, z). Also give an expansion for the vector
potential of this field. The azimuthal currents that produce this field are at very large radius
r.

2 Solution

This problem is a peculiar kind of boundary value problem in which a field is specified only
along a line. In case the on-axis field has transverse components there is no a unique solution,
as discussed in [1]. Here we obtain a unique solution under the assumption that the field
off-axis is azimuthally symmetric. See sec. 13.4.2 of [2] for a multipole expansion for fields
without azimuthal symmetry.1

2.1 Expansion of the Field

Suppose a magnetic field in a current-free region is rotationally symmetric about the z-axis.
Then,

B = Br(r, z) r̂ + Bz(r, z) ẑ (1)

in cylindrical coordinates (r, φ, z). If we write

Bz(r, z) =
∞∑

n=0

an(z)rn, and Br(r, z) =
∞∑

n=0

bn(z)rn , (2)

then a0(z) = Bz(0, z). Since the divergence of the magnetic field vanishes, the proposed
expansions (2) obey,

∇ · B =
1

r

∂Br

∂r
+

∂Bz

∂z
=

∑
n

[
(n + 1)bnrn−1 + a(1)

n rn
]

= 0, (3)

where a(m)(z) ≡ dma/dzm. For this to be true at all r, the coefficients of rn must separately
vanish for all n. Hence,

b0 = 0, (4)

bn = − a
(1)
n−1

n + 1
. (5)

1The function a0(z) = a
(0)
0 (z) used here is the same as C

[1]
0 (z) in [2].
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Since the curl of the magnetic field also vanishes (outside the source currents),

(∇ × B)φ =
∂Br

∂z
− ∂Bz

∂r
=

∑
n

(
b(1)
n rn − nanr

n−1
)

= 0 , (6)

Again, the coefficient of rn must vanish for all n, so that,

b(1)
n = (n + 1)an+1. (7)

Using eq. (7) in eq. (5), we find,

bn = − b
(2)
n−2

(n + 1)(n + 3)
. (8)

Since b0 vanishes, b2n vanishes for all n, and from eq. (7), a2n+1 vanishes for all n. Then,
using eq. (8) in eq. (7), we find,

a2n = −a
(2)
2n−2

4n2
. (9)

Repeatedly applying this to itself gives,

a2n = (−1)n a
(2n)
0

22n(n!)2
. (10)

Inserting this in eq. (5), we get,

b2n+1 = (−1)n+1 a
(2n+1)
0

22n+1(n + 1)(n!)2
. (11)

Combining eqs. (10)-(11) with eq. (2), we arrive at the desired forms,

Bz(r, z) =
∑

n

(−1)n a
(2n)
0 (z)

(n!)2

(r

2

)2n

, (12)

and,

Br(r, z) =
∑

n

(−1)n+1 a
(2n+1)
0 (z)

(n + 1)(n!)2

(r

2

)2n+1

, (13)

for the field components, where,

a
(n)
0 =

dna0

dzn
. (14)

These results are overly detailed for some purposes. If one is interested only in the leading
behavior at small r, then eqs. (12)-(13) simplify to,

Bz(r, z) ≈ Bz(0, z), Br(r, z) ≈ −r

2

∂Bz(0, z)

∂z
. (15)

The result for Br also follows quickly from ∇ · B = 0, according to eq. (3),

Br(r, z) = −
∫ r

0

r
∂Bz(r, z)

∂z
dr ≈ −

∫ r

0

r
∂Bz(0, z)

∂z
dr = −r

2

∂Bz(0, z)

∂z
. (16)
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It is also instructive that the approximation (16) can be deduced quickly from the integral
form of Gauss’ law (without the need to recall the form of ∇ ·B in cylindrical coordinates).
Consider a Gaussian pillbox of radius r and thickness dz centered on (r = 0, z). Then,

0 =

∫
B · dS ≈ πr2[Bz(0, z + dz) − Bz(0, z)] + 2πr dz Br(r, z)

≈ πr2 dz
∂Bz(0, z)

∂z
+ 2πr dz Br(r, z) , (17)

which again implies eqs. (15).

2.2 Expansion of the Vector Potential

The magnetic field can be generated by (distant) currents that are purely azimuthal, so that
a purely azimuthal vector potential Aφ suffices. Then,

Br = −∂Aφ

∂z
, and Bz =

1

r

∂(rAφ)

∂r
. (18)

Hence, Aφ = − ∫
Br dz, are recalling eq. (13) we find

Aφ(r, z) =
∑

n

(−1)n a
(2n)
0 (z)

(n + 1)(n!)2

(r

2

)2n+1

. (19)

This result also follows from Aφ = (1/r)
∫

rBz dr and eq. (12).

3 B Deduced from Its Value on a Surface

A more typical boundary value problem is to determine the field B from its value on a
bounding surface.

One approach for this is to recall the results of vector diffraction theory, particularly as
formulated by Kottler [3, 4] for fields with time dependence e−iωt in vacuum,2

E(x) =

∫
V

(
ik

c
J(x′)

eikr

r
+ ρ(x′)∇′ e

ikr

r

)
dVol′ +

i

ω

∮
S

(J · n̂′)∇′ e
ikr

r
dArea′

− 1

4π
∇ ×

∮
S

{
[n̂′ × E(x′)]

eikr

r
+

i

k
∇ × [n̂′ × B(x′)]

eikr

r

}
dArea′, (20)

B(x) =
1

c

∫
V

J(x′) × ∇′ e
ikr

r
dVol′

− 1

4π
∇ ×

∮
S

{
[n̂′ × B(x′)]

eikr

r
− i

k
∇ × [n̂′ × E(x′)]

eikr

r

}
dArea′, (21)

2The operations involving ∇, which act only on the factor r, should be performed before the surface
integrations in eqs. (20)-(21).
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where n̂′ is the outward unit vector normal to surface S, r = |x − x′|, c is the speed of
light in vacuum, k = ω/c, and Gaussian units are employed. See the Appendix of [5] for
derivations and discussion of these forms.

For a region with no currents the magnetic field can be related to a vector potential that
follows from eq. (21) as,

A(x) =
1

4π

∮
S

{
B(x′) × n̂′e

ikr

r
− i

k
∇ × [E(x′) × n̂′]

eikr

r

}
dArea′, (22)

assuming that we can take the curl after performing the integrations. If E and B are zero
everywhere on the surface of a region then A is zero in its interior, according to eq. (22).
The prescription of eq. (22) cannot be extended to all of space since there must be currents
somewhere if B is nonzero somewhere.

In the static limit, ω = 0 = k, the electric field does not depend the current density J or
the magnetic field, and the magnetic field does not depend on the electric field. Noting that
∇′(1/r) = r̂/r2 = −∇(1/r), we obtain,

E(x) =

∫
V

ρ(x′)
r̂

r2
dVol′ +

1

4π

∮
S

r̂ × [n̂′ × E(x′)]
r2

dArea′, (23)

B(x) =
1

c

∫
V

J(x′) × r̂

r2
dVol′ +

1

4π

∮
S

r̂ × [n̂′ × B(x′)]
r2

dArea′, (24)

If there are no currents within the volume of integration, the static magnetic field there can
be deduced from the vector potential,

A(x) =
1

4π

∮
S

B(x′) × n̂′

r
dArea′ (static limit), (25)

recalling eq. (21). The example of a static, toroidal magnetic field (for which B = 0 outside
the torus but

∮
A · dl =

∫
B · dArea is nonzero for loops that link the torus) suggests that

eqs. (22) and (25) are restricted to simply connected regions.

3.1 Uniform Axial Field

As an example, consider a uniform axial field, B = B0 ẑ that is generated by azimuthal
currents about the z-axis. The associated vector potential has only the azimuthal component,

Aφ =
ρB0

2
. (26)

in a cylindrical coordinate system (ρ, φ, z).
We take the point of observation to be (ρ, 0, 0). As the surface of integration for eq. (25)

we consider a cylinder of radius a > ρ with faces at −z1 and z2. Then, B × n̂′ = B0 φ̂ and,

Aφ = Ay =
1

4π

∫ 2π

0

a dφ

∫ z2

−z1

dz
B0 cosφ√

z2 + a2 + ρ2 − 2aρ cosφ

=
aB0

4π

∫ 2π

0

cos φdφ ln
z2 +

√
z2
2 + a2 + ρ2 − 2aρ cosφ

−z1 +
√

z2
1 + a2 + ρ2 − 2aρ cos φ
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=
aB0

4π

∫ 2π

0

cos φdφ

[
ln

(
z2 +

√
z2
2 + a2 + ρ2 − 2aρ cos φ

)

+ ln

(
z1 +

√
z2
1 + a2 + ρ2 − 2aρ cosφ

)
− ln

(
a2 + ρ2 − 2aρ cos φ

)]

= −aB0

4π

∫ 2π

0

cos φdφ ln

(
1 +

ρ2

a2
− 2

ρ

a
cos φ

)
=

ρB0

2
, (27)

using 4.397.6 of [6]. A delicacy is our assumption that,

∫ 2π

0

cos φdφ ln
(
z +

√
z2 + a2 + ρ2 − 2aρ cos φ

)
= 0, (28)

for nonzero values of z. This integral clearly goes to zero for large z, and the calculation
(27) of Aφ must be independent of the values of z1 and z2.

3.2 Other Formulations

Section 14.3-4 of [2] gives a formalism by which B can be computed from knowledge of its
normal component, B · n̂, on elliptical cylindrical surfaces, and sec. 18.2 describes the use of
the tangential component B × n̂ on circular cylinders. Expansions in terms of a magnetic
scalar potential can also be given [7].
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