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Abstract

It is shown that in a rectangular box with perfectly reflecting walls, the field energy
and momentum of a classical electromagnetic normal mode do not transform as a
Lorentz 4-vector. Moreover, an exact expression is found for the transformed energy,
and it is found to have an oscillating component. Likewise, the total energy and
momentum of particles bouncing in a box do not form a Lorentz 4-vector, but a model
of the energy and momentum in the walls of the box associated with the stress of the
particles bouncing off them shows that the total system energy and momentum do
form a Lorentz 4-vector.

Introduction

In this note, we discuss the classical problem of a box (or cavity) which contains bouncing
particles or standing electromagnetic waves. In the case of waves, the box has “perfectly”
reflecting walls (a.k.a. mirrors) and in the case of particles, the box has “perfectly” elastic
walls. In both cases, we compute the energy and momentum of the interior subsystem (that
is, the waves or particles) in the rest frame of the box, and the energy in a moving reference
frame. What seems surprising (at least to me), is that subsystem energies and momenta
do not transform as components of Lorentz 4-vectors. Upon further examination of the
particle case, the root of this problem is that the box walls participate in the containment
of waves or particles, and the wall energy and momentum transform in such a way that the
total energy and momentum of the system do form a Lorentz 4-vector.

What these results illustrate, is that in relativistic systems, it isn’t always possible to
cleanly identify subsystems with energy-momentum vectors that transform as Lorentz 4-
vectors.1 This observation isn’t new and has been previously noted in papers by Rohrlich
[1] and McDonald [2], as well as in sec. 12.10 of [3]. What those authors have explored
is the question of which Lorentz vectors and second-order tensors can be constructed from
subsystem parameters, to have properties resembling energy and momentum.2 The analysis
below approaches things a bit differently. For the subsystems, we will take their energy and
momentum variables to be given by the expressions that would apply if those subsystems

1In this paper, when we refer to the 4-momentum in a particular frame, that should not be taken to
imply anything about the frame transformation rules to a different frame. Rather, for the purposes of this
paper, the frame-dependent 4-momenta should be regarded simply as a 4-tuplet. We then will explore how
the components of that 4-tuplet transform, and in cases where they transform as a Lorentz 4-vector, that
will be noted explicitly.

2One difficulty in constructing the “usual” momentum components, is that a confined subsystem
isn’t translation invariant and therefore the “usual” momentum operator doesn’t generate the translation-
invariance symmetry.
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were free (as though there were no interaction between the walls of the cavity and the
substance interior to the cavity). We’ll then see that for different kinds of cavity subsystems
(e.g., particles or EM waves),3 the form of the energy-momentum transformations are similar
but are not the Lorentz transformations for 4-vectors.

1 Particles in a box; all motion in one dimension

Imagine a box of length L and rest-mass Mbox, in which there are N particles of mass
m and velocity ±u traveling in the +x (right) and −x (left) directions in the rest frame
of the box. Those particles collide elastically with the walls, but do not collide with one
another. The left-moving particles are uniformly spaced with separations 2L/N , and the
right-moving particles have the same separations. The interval in time between left-moving
(or right-moving) particles passing a given point is ∆ = 2L/uN .

In the rest frame of the box, the particles in flight have 4-momentum (E, p, 0, 0) =
(Nmγ(u), 0, 0, 0), where γ(u) = 1/

√
1− u2, in units where the speed of light is 1. Now go

into a reference frame moving at velocity v to the right and compute the 4-momentum of
the particles in flight in this new reference frame, which we will call the ′ frame.4

Details of the calculations in the ′ frame are in sec. 1.1 below, and are summarized as
follows. The time-interval ∆ is Lorentz dilated, ∆′ = γ(v)∆. The box is Lorentz contracted,
L′ = L/γ(v). We examine only particles “in flight” – that is, we consider particle momenta
and energy only during instants of time when no particles are in contact with the walls. This
concept of “instant of time” is frame-dependent. Particles in flight, which are taken to be
simultaneous in the ′ frame, aren’t simultaneous in the rest frame, so care must be taken to
check which way the particles are going at a given time. Finally, velocities and momenta
must be Lorentz transformed (differently according to whether the particles are moving left
or right). The net result is that the total 4-momentum (E ′, p′, 0, 0) of the particles is related
to the total rest-frame 4-momentum by (E ′, p′, 0, 0) = γ(v)E((1 + u2v2,−v(1 + u2), 0, 0). As
anticipated in the introduction, the transformed energy has a term proportional to u2v2 and
the transformed momentum has a term proportional to u2, neither of which would be present
if the total energy-momentum of the particles were a Lorentz 4-vector.

1.1 Energy and momentum of the particle subsystem

As noted above, the total 4-momentum of the particles in the rest frame of the box is,

P = (E, p, 0, 0) = (Nmγ(u), 0, 0, 0). (1)

In the ′ frame, the particle velocities are,

u′L = − u+ v

1 + vu
, u′R =

u− v
1− vu

. (2)

3I’m grateful to Kirk McDonald for pointing out the clarifications required for our definition of subsystem
energies.

4Quantities in the ′ frame will be written with a ′, while quantities in the rest frame of the box will
be written without a ′. The Lorentz transformation of coordinates from the rest frame to the ′ frame is
x′ = γ(v)(x− vt), t′ = γ(v)(t− vx), and the velocity transformation is u′x = (ux − v)/(1− uxv).
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Here, u′L denotes the velocity of the particles going from the right wall towards the left wall
(in the ′ reference frame), and u′R denotes the velocity of the particles going from the left
wall towards the right wall.

What is the travel-time T ′L it takes for a particle to travel from the right wall to the left
wall in the ′ frame? Remember that the distance between walls in the ′ frame is L′ = L/γ(v).
The equation to be solved is,

u′LT
′
L = −vT ′L −

L

γ(v)
. (3)

Similarly, the travel-time T ′R for a particle to travel from the left wall to the right wall is the
solution to the equation,

u′RT
′
R = −vT ′R +

L

γ(v)
. (4)

These are solved by,

T ′L =
L/γ(v)

(u+ v)/(1 + vu)− v
=
Lγ(v)(1 + vu)

u
=
N∆γ(v)(1 + vu)

2
, (5)

T ′R =
L/γ(v)

(u− v)/(1− vu) + v
=
Lγ(v)(1− vu)

u
=
N∆γ(v)(1− vu)

2
. (6)

Next, we calculate the time-average) number N ′L of particles traveling from the right
wall to the left wall, as observed in the ′ frame, and the number of particles N ′R traveling
from the left wall to the right wall. For each direction, divide the travel-time by the bounce
time-interval, ∆′ = γ(v)∆, as measured in the ′ frame, to obtain,5

N ′L =
T ′L

γ(v)∆
=
N(1 + uv)

2
, N ′R =

T ′R
γ(v)∆

=
N(1− uv)

2
. (7)

It is easy to see from these equations that N ′L +N ′R = N , showing the Lorentz invariance of
the total number of particles in flight.

The final step is to calculate the the energies and momenta of the particles in the ′

frame. We use the Lorentz transformation (E ′(u), p′(u), 0, 0) = γ(v)((mγ(u)−vp(u)), p(u)−
mvγ(u), 0, 0), where (mγ(u), p(u), 0, 0) is the 4-momentum of the particle in the rest frame
and (E ′(u), p′(u), 0, 0) is the 4-momentum of the particle in the ′ frame. Each left-moving
particle in the rest frame has momentum γ(u)(−mu) and each right-moving particle in the
rest frame has momentum γ(u)(mu), so,

(E ′L, p
′
L, 0, 0) = N ′Lmγ(u)γ(v)((1 + uv),−(u+ v), 0, 0)

=
Nmγ(u)γ(v)

2
((1 + uv)2,−(u+ v)(1 + uv), 0, 0), (8)

and,

(E ′R, p
′
R, 0, 0) = N ′Rmγ(u)γ(v)((1− uv), (u− v), 0, 0)

=
Nmγ(u)γ(v)

2
((1− uv)2, (u− v)(1− uv), 0, 0). (9)

5Since the number of particles cannot be fractional, all results depending on N ′
L and N ′

R – neither of
which are generally integers – must be regarded as time-averages. That is true, for example, of both E′ and
p′.
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As usual, the subscripts L and R denote respectively the left and right moving particles.
Then, adding the two 4-vectors gives the total transformed 4-momentum as,

P ′ = (E ′, p′, 0, 0) = (E ′L + E ′R, p
′
L + p′R, 0, 0)

= Nmγ(u)γ(v)
((

1 + u2v2
)
,−v(1 + u2), 0, 0

)
= γ(v)E

((
1 + u2v2

)
,−v(1 + u2), 0, 0

)
, (10)

as claimed above, recalling the total rest-frame E from eq. (1). The terms proportional to
u2v2 and u2 are consequences of the fact that N ′R 6= N ′L.

One further remark is in order at this point. The problem was carefully set up in the rest
frame so that particles collide with the two walls at precisely the same time, and therefore
the same number of particles are always traveling rightwards as traveling leftwards. This was
accomplished by our choice of ∆. Nothing would prevent us from picking a different value
of ∆ so that during some portion of the interval, there are differing numbers of particles
moving leftwards and rightwards in the rest frame. Then, the total lab-frame momentum
of the particles (in flight) would not always be zero, and the box enclosing the particles
would not always be at rest. But, even with ∆ chosen such that the rest frame total particle
4-momentum is time-independent, the ′ frame momentum is not. As observed previously,
the ′ frame numbers of particles computed in equation (7) are generally fractional, imply-
ing a complicated time-dependence in the numbers of particles traveling in each direction.
This also implies a similarly complicated time-dependence of the transformed 4-momentum.
However, the time-average behavior follows eq. (10) in the ′ frame (and eq. (1) in the rest
frame).

1.2 Energy and momentum of the walls

There is no transfer of energy between particles and walls in the approximation of elastic
collisions and rigid walls connected by rigid struts to form a rigid box. An actual box would
not be rigid and the collisions would not be elastic. We make no attempt to construct a
model for this, but anticipate that the physics would be challenging (see, for example, the
non-interaction theorem of Currie et al. [4]).

Instead, we estimate the contribution of the walls’ energy and momentum to the total
system by imagining that the left and right walls are detached from one another. Then, the
bouncing particles would push the walls apart, and in doing so the particles would gradually
lose their energy. The heavier the walls are, the longer it would take for the particles to slow
down.

In the calculations which follow, assume that the right and left walls each have a rest
mass Mw which is much larger than the particle mass m. For convenience, also assume that
side walls have 0 mass, so that in the absence of collisions (the initial state), the box’s total
rest frame 4-momentum is Pinitial,box = (2Mw, 0, 0, 0).

Start in the rest frame, and consider a right-moving particle with velocity u. Its 4-
momentum is (mγ(u),muγ(u), 0, 0). Assume that the right wall (which, for the purposes
of this calculation is detached from the left wall) is initially at rest. Also assume an elastic
collision between the particle and the wall, by which is meant that the following energy-
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momentum conservation equations hold in the rest frame,

mγ(u) +Mw = mγ(uf ) +Mwγ(uw). (11)

muγ(u) = mufγ(uf ) +Mwuwγ(uw), (12)

where uf is the final velocity of the particle, and uw is the final velocity of the wall. It follows
that,

uf = −u+O
(
m

Mw

)
, (13)

and the post-collision 4-momentum (in the rest frame) for the wall is,

(Ew, pw, 0, 0) =

(
Mw

(
1 +O

(
m

Mw

)2
)
, 2muγ(u) +mO

(
m

Mw

)
, 0, 0

)
. (14)

In the ′ frame after collision, the wall’s energy is transformed to γ(v)(Mw− 2mvuγ(u)) +
mO(m/Mw). The wall’s momentum is transformed to γ(v)(2muγ(u)−vMw)+mO(m/Mw).
From now on, drop the terms of relative order O(m/Mw). Without collisions, the right wall’s
4-momentum in the ′ frame would have been P ′initial,box = γ(v)Mw(1,−v, 0, 0). For each
collision with the right wall, there is an extra contribution of −2mvuγ(u)γ(v) to the wall’s
′-frame energy and an extra contribution of 2muγ(u)γ(v) to the wall’s ′-frame momentum.
So if there are N ′L particles in flight from left to right, they will have caused – during their
bounces – the right wall to change its 4-momentum by 2N ′Lmγ(u)γ(v)(−vu, u, 0, 0).

In precisely the same way, left-moving particles bouncing with the left wall, will each
cause changes to the wall’s energy and momentum. The left-moving particles are traveling
in the opposite direction to v so some of the expressions will have sign changes. Then,
following the same reasoning as before, if there are N ′R particles in flight from right to left,
they will have caused – during their bounces – the left wall to change its 4-momentum by
2N ′Rmγ(u)γ(v)(vu,−u, 0, 0).

In summary, the prior impact of particles in flight has changed the ′-frame 4-momentum
of the box from P ′initial,box to P ′box = P ′initial,box + 2mγ(u)γ(v)(N ′R − N ′L)(vu,−u, 0, 0). Of
course, the actual box is rigid, so these changes of momentum are presumably not kinetic,
but rather internal (to the box walls). It seems plausible to assume that the net effect on
the walls should be the average energy and momentum gained from the particles in flight,
thus half of the change computed above. Putting all this together, and recalling eq. (7), we
obtain for this average,

P ′box = P ′initial,box −Nmγ(u)γ(v)uv(vu,−u, 0, 0). (15)

When this is added to eq. (10) we get, recalling P from eq. (1),

P ′ + P ′box
= γ(v)

(
Nmγ(u)(1 + u2v2) +Mbox −Nmu2v2γ(u),−Nmγ(u)v(1 + u2) +Nmγ(u)u2v, 0, 0

)
= γ(v)(P + Pbox). (16)

The total 4-momentum of the system is thus seen to transform as a Lorentz 4-vector.
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1.3 Critical illumination

Another analysis can be done which allows us to consider the total 4-momentum, but without
making assumptions about the walls’ internal energy or resorting to the plausibility argument
given for averaging over collisions. We start off similarly to the previous section, with the
left and right walls detached from one another. However, now the walls are held in place
by collisions with external particles. Those external particles are emitted by two sources:
one that is far to the left of the box, and one that is far to the right of the box. The
frequency and momentum of the external collisions must be arranged to precisely counteract
the effect of the internal particles colliding with the walls. We will describe this arrangement
using the term critical illumination, borrowed from a paper by Fiola et al. on black-hole
thermodynamics [5].

We will analyze this situation by picking a time interval and computing the total
4-momentum during that interval. The time interval is chosen to be very small compared to
the amount of time it takes for a particle to travel from the source to the closest wall but very
large compared to the travel-time from one wall to the other.6 Under these circumstances,
we can make the assumption that during the stated time interval, the sources don’t emit any
new particles. It therefore won’t be necessary to consider the dynamics of the sources and
for the remainder of this analysis, the sources will be ignored, as will the exact duration of
the above-stated time interval. For convenience, we set the rest-frame x-coordinates of the
two walls at 0 and L. Also, we set the number, NE, of left external particles (i.e., those to
the left of the cavity) to be equal the number of right external particles.

Start in the rest frame. Consider first the right wall. The internal particles collide with the
wall with a frequency 1/∆, and each internal particle has a momentum muγ(u). Assuming
all interactions are perfectly elastic, then in order for the wall to remain at rest, the external
particles must collide with the wall with the same frequency as the internal balls, and also
the external particles must each have an initial momentum of −muγ(u). Furthermore, the
external particles each have the same energy mγ(u) as the internal particles. After collision,
both the internal particles and external particless reverse their momenta and maintain their
energies. Similar considerations apply to the left wall. It is easy to see that at all times, the
external (to the cavity) momentum is 0 and the external energy is 2NEmγ(u). Therefore, in
the rest frame, the total system momentum is 0 and the total system energy is,

Es = 2NEmγ(u) + E, (17)

where E is given by eq. (1).
In the ′ frame, we have to be particularly careful managing the non-simultaneity of events.

We’ve already encountered that issue when computing the 4-momenta of particles inside the
box, and indeed, that was the origin of the fact that the cavity energy and momentum don’t
transform as a 4-vector. We obtain for each external right-hand particle before collision, the
4-momentum,7

P
′B
R = mγ(v)γ(u)((1 + uv),−(u+ v), 0, 0), (18)

6These inequalities are assumed to be true both in the rest frame and the moving frame.
7In obtaining these 4-momenta, it is easiest to arrange things so that the wall collisions with external

particles occur at precisely the same instants as they do with the internal particles (otherwise the equations
would be slightly more complicated, involving the wall energies and momenta which, when averaged over
time, would vanish in the limit of large time).
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and after collision,
P

′A
R = mγ(v)γ(u)((1− uv), (u− v), 0, 0), (19)

with a net change of,
∆P ′R = 2mγ(v)γ(u)(−uv, u, 0, 0). (20)

Similarly, for each external left-hand ball before collision, the energy-momentum vector is,

P
′B
L = mγ(v)γ(u)((1− uv), (u+ v), 0, 0), (21)

and after collision,
P

′A
L = mγ(v)γ(u)((1 + uv),−(u− v), 0, 0), (22)

with a net change of,
∆P ′L = 2mγ(v)γ(u)(uv,−u, 0, 0). (23)

What is important to note is that for each collision, ∆P ′L = −∆P ′R. Because of that,
the net external momentum at any instant in the ′ frame, is obtained by computing how
many more collisions have occurred on the right than on the left, then multiplying by ∆P ′R.
Without loss of generality, let t′ = 0 and the left side of the cavity be at x′L = 0. Since the
cavity is contracted in the ′-frame, its right side will be at x′R = L/γ(v). Although those two
points are simultaneous in the ′ frame, they have a time difference of Lv in the rest frame.
We can easily see this from the transformation equation t = γ(v)(t′ + vx′) leading to the
left side with tL = 0 and the right side with tR = vL. In the rest frame, we have previously
found that the interval between internal collisions (with each wall) is ∆ = 2L/uN , so the
total number of excess right-wall collisions in the rest-frame (corresponding to simultaneity
in the ′-frame) is Nexcess = vL/∆ = Nuv/2.

Finally, the external 4-momentum can be computed in the ′ frame as,

P ′E = (Nuv/2)∆P ′R =
Nuv

2
2mγ(v)γ(u)(−uv, u) (24)

= Nmγ(u)γ(v)(−u2v2, u2v). (25)

When we add this to the transformed internal cavity 4-momentum P ′ from eq. (10), obtain-
ing,

P ′ + P ′E = γ(v)(P + PE). (26)

This completes the proof that the total system 4-momentum, during critical illumination,
transforms as a Lorentz 4-vector.

Critical illumination can also be used to examine closed systems of length L, whose inte-
rior 4-momentum is carried by a different mechanism than that of the critical illumination.
As an example to be considered shortly, the box can be replaced by a cavity in which there
are standing electromagnetic waves. If this cavity is critically illuminated by particles,8 then

8In this section on critical illumination, an essential assumption in the analysis was that the walls – since
they are held in place by internal and external forces – have a total 4-momentum (specifically of the form
(Mw,0)) which transforms as a Lorentz 4-vector. This assumption seems plausible when the six walls of
the box are mechanically detached from one another and are bombarded on all sides by particles. However,
perhaps more analysis is needed when some of the forces are electromagnetic in nature. In general, electric
currents must then flow across the edges between adjacent walls and we may need to add an assumption
that while the walls are mechanically detached from one another, they remain in electrical contact.
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the transformation properties of the external 4-momentum must combine with those of the
internal 4-momentum so as to preserve the Lorentz 4-vector nature of the total. Therefore,
without actually doing the calculation of the transformation properties of the electromag-
netic 4-momentum in the box, we can infer it from the transformation properties of the total
4-momentum of the external particles.

2 Particles in a box; three-dimensional motion

Imagine a cubical box of edge length L, with particles of massm and velocities (±ux,±uy,±uz)
bouncing elastically off the walls. We will again consider both the box rest-frame, and the
′ frame where the observer moves in the positive x direction with speed v. From now on,
in this paper, we will concentrate on the energy (and not the momentum) of the subsystem
internal to the cavity. In the rest frame, the internal subsystem momentum is 0. Therefore,
if the 4-momentum were to transform as a Lorentz 4-vector, the transformed energy E ′

should be E ′ = γ(v)E. What we will find, is that this is not the way the energy transforms.
We will describe this phenomenon by saying that the “energy does not transform as the
component of a Lorentz 4-vector”.

The particles will bounce off all walls but the initial state will, as before, be set up so
that in the rest frame, there are N particles in flight, bouncing off the left and right walls at
a constant interval ∆ = 2L/(uxN). One minor generalization to this analysis could be to set
up the problem so that, initially, multiple particles are emitted simultaneously from one of
the walls. Since that would not ultimately change the relationship between rest-frame and
′-frame energies, we won’t analyze this generalization any further.

2.1 Massive particles

The calculation of particle energy proceeds similarly to the one-dimensional case. Assume in
this section thatm > 0. Each particle has a rest frame 4-momentummγ(u)(1,±ux,±uy,±uz)
where u =

√
u2x + u2y + u2z. In the rest frame, the particle subsystem total energy is then,

E3D = Nmγ(u) =
2Lmγ(u)

ux∆
. (27)

In the ′ frame, the particle’s energy is E ′ = γ(u)γ(v)m(1 ∓ vux). It is easy to see that the
numbers, N

′3D
L , of particles moving leftwards, and N

′3D
R of particles moving rightwards, are

computed just as in eq. (7), except that particle speed ux is used instead of u. The final
result in the ′ frame for energy of particles in flight is,

E ′3D = Nγ(v)mγ(u)(1 + u2xv
2) = γ(v)E3D(1 + u2xv

2). (28)

2.2 Massless particles

Much of the analysis done for massive particles, also applies to massless particles, which
travel at light speed (u = 1). Of course, care must be taken with limits. In the case where
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motion is in the x direction, eq. (7) becomes,9

N
′photon
L =

L

∆
(1 + v), N

′photon
R =

L

∆
(1− v). (29)

This result was calculated by Avron et al. [6] who also illustrated, with a space-time diagram,
the difference between N ′L and N ′R and the fact that the total number of massless particles is
Lorentz invariant. Unfortunately, their analysis was incomplete and they did not deduce the
anomalous Lorentz transformation behavior of energy of the massless-particle subsystem.

The problem of true (vector) photons in a cavity has also been examined by several other
authors including Einstein [7], Zeldovich [8] and McDonald [9]. As observed by McDonald,
photons in a box (with conducting walls) do not travel parallel to two sides of the cavity.
More precisely, when using photon states to help model classical electromagnetic fields in a
cavity, those photon states are superpositions representing photons whose momenta are not
parallel to the x-axis. More on this later.

For massless particles in three dimensions, we can adapt the results of the previous
section. Our starting point is the rest-frame particle 4-momentum (ω,±kx,±ky,±kz) where
w = k =

√
k2x + k2y + k2z . It’s easy to see that the particle’s x-velocity is ux = kx/ω. In the ′

frame, the particle energy is E ′ = γ(v)(1 ∓ vkx) and finally, the ′-frame energy of particles
in flight is,

E ′photon = γ(v)Ephoton

(
1 +

kx
ω

2

v2
)

= γ(v)Ephoton

(
1 + u2xv

2
)
, (30)

where Ephoton is the cavity rest-frame energy of massless particles in flight.
Thus far, the massless particles discussed don’t have the properties of real physical pho-

tons. In order to properly make that connection, quantum mechanics must be introduced.
Furthermore, in order to relate photons to electromagnetic fields, their energy is ω, and
momentum is k = (kx, ky, kz), in units where ~ = 1.

Photons are also polarized, although the polarizations have no effect on the energy rela-
tionships. What is more of a concern, is that quantum massless particles cannot be sensibly
localized. This makes it difficult to convincingly make arguments about bouncing against
walls, and about how many photons are traveling in each direction. In fact, there are fun-
damental ambiguities about how to count the photons that make up the standing waves in
a cavity. One approach, described for example, in [10], is to construct coherent states. A
coherent k-state |zσ(k)〉 is defined as,

|zσ(k)〉 = e−|zσ(k)|
2/2 ezσ(k)â

†
σ(k)|0〉 , (31)

where â†σ(k) is the usual vector-potential creation operator, and |0〉 is the vacuum state (for
example, for a cubic box of length L). This state can be thought of as a superposition of
N -photon states, with momentum k, where all values of N are weighted by the exponential
operator shown. The expectation of the vector potential operator in the state consisting of
the sum over k of coherent k-states, satisfies [10],〈

Â(t,x)
〉

=
1

L3/2

∑
k̂

2∑
σ=1

√
2π

ω

[
zσ(k)εσ(k) eik·x−iωt + z?σ(k)εσ(k) e−ik·x+iωt

]
. (32)

9Here we use the superscript photon to refer to scalar massless particles, and not to real photons
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Since eq. (30) is independent of N , that equation applies equally well to the coherent
state. However, the caveat about localization could still be of concern. One indirect way
to circumvent this issue is to notice that the coherent-state expectation values of the elec-
tromagnetic fields E and B can be used to model the classical Maxwell theory [10]. We
can then use that classical theory to analyze the energies of standing waves both in the rest
frame and ′ frame of the box. That analysis is the subject of the next section.

3 Electromagnetic waves in a cavity

As anticipated, when analyzing classical electrodynamics of waves in a cavity, the results
are expected to be similar to what is predicted with the photon analysis. However, the
calculations look different. We examine a right parallelepiped (rectangular) cavity with
coordinates (0 < x1 < L1, 0 < x2 < L2, 0 < x3 < L3). Modes are indexed by n = (n1, n2, n3).
Set the mode vector10 components and frequencies to kni = niπ/Li and ωn =

∑3
i=1(k

n
i )2,

where the ni are non-negative integers (of which at least 2 must be nonzero).
We will follow a convention where we describe the electric and magnetic fields as the real

parts of complex vectors E and B. Then, the standing waves (modes) for the ith component
of the electric and magnetic fields are,

ReEi(t,x) =
∑
n

[
1

tan(kni xi)

3∏
j=1

sin(knj xj)

]
[an
i sin(ωnt) + bn

i cos(ωnt)] , (33)

ReBi(t,x) =
∑
n

[
tan(kni xi)

ωn

3∏
j=1

cos(knj xj)

]
[− (an × kn)i cos(ωnt) + (bn × kn)i sin(ωnt)] ,

(34)
where an and bn are coefficient vectors each perpendicular to n. Also, notice that although
the combination of trigonometric functions appears to sometimes be ill-defined owing to
either a 0 or infinite value of the tangent, it turns out that the trigonometric ratios all have
perfectly finite limits as one approaches those values.

The well-known Lorentz transformations of these electromagnetic fields to the ′ frame,
with coordinates x′ = γ(v)(x− vt) and t′ = γ(v)(t− vx), are,

ReE ′1(t
′, x′, y′, z′) = ReE1(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′), (35)

ReB′1(t
′, x′, y′, z′) = ReB1(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′), (36)

and for i = 2 or 3,

ReE ′i(t
′, x′, y′, z′) = γ(v)[ReEi(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)

+εi1jvReBj(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)], (37)

ReB′i(t
′, x′, y′, z′) = γ(v)[ReBi(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)

−εi1jvReEj(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)], (38)

10We use the term“mode vector” to denote the vector whose components are magnitudes of the wave
vectors for the oppositely moving waves that constitute the standing wave in question.

10



where, in these equations, there is implied summation over index j with the standard Levi-
Civita epsilon symbol εi1j.

The electromagnetic-field energy is computed in the rest-frame as,

E(t) =
1

2

∫ L1

0

∫ L2

0

∫ L3

0

(
|ReE(t,x)|2 + |ReB(t,x)|2

)
d3x, (39)

and in the ′ frame as,11

E ′(t′) =
1

2

∫ L1
γ(v)
−vt′

−vt′

[∫ L2

0

∫ L3

0

(
|ReE′(t′,x′)|2 + |ReB′(t′,x′)|2

)
dy′ dz′

]
dx′. (40)

It is easily shown that, as expected, E(t) is time-independent so the time argument can be
suppressed. However, it is not obvious that the same should be true of E ′(t′). We will return
to this point later.

The details of the calculation of boosted energy will follow the elegant presentation by
McDonald [9]. Rather than parameterizing waves by the a and b vectors of eqs. (33) and
(34), McDonald parametrized the waves by complex vector E0. We will adopt McDonald’s
notation.12

Define B0 by,

B0 =
k

ω
× E0. (41)

The standing waves of eq. (33) and (34) are then equivalent to E = E++E− and B = B++B−

where,

E+ = (E0
1 sin k2y sin k3z,−iE0

2 cos k2y sin k3z,−iE0
3 sin k2y sin k3z)

ei(k1x−ωt)

2
, (42)

E− = (E0
1 sin k2y sin k3z, iE

0
2 cos k2y sin k3z, iE

0
3 sin k2y sin k3z)

e−i(k1x+ωt)

2
, (43)

B+ = (−B0
1 cos k2y cos k3z,−iB0

2 sin k2y cos k3z,−iB0
3 cos k2y sin k3z)

ei(k1x−ωt)

2
, (44)

B− = (B0
1 cos k2y cos k3z,−iB0

2 sin k2y cos k3z,−iB0
3 cos k2y sin k3z)

e−i(k1x+ωt)

2
, (45)

We only are concerned with the real parts of E± and B±. These satisfy the transformation
eqs. (35)-(38). Note that a linear transformation of the real part of an equation is equal to
the real part of the linear transformation. Therefore, we can apply eqs. (35)-(38) directly

11There is an arbitrariness to the time-dependence of the x′ integral. The difference between upper and
lower bounds must be equal to the contracted length L1/γ but the choice of time-displacement depends on
precisely which value of t′ we choose to correspond to t. In the ′ frame, the positions (t′, x′) for a fixed value
of t′ correspond in the rest frame to different values of t. My choice of bounds doesn’t have an intuitive
interpretation, but is as good as any other. All time-dependent results will be correct up to a constant shift
in time.

12One exception on notation is that McDonald’s relationship between B0 and E0 differs from mine by a
factor of i.
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to the complex-valued fields. Also note that the coordinates x′ and t′ appear only in the
following situations,

e±i(k1x−ωt) = e±iγ(v)((k1−ωv)x
′−(ω−k1v)t′), e±i(k1x+ωt) = e±iγ(v)((k1+ωv)x

′+(ω+k1v)t′) (46)

The energy-density will involve products of pairs of those exponential terms. It is easy to see
that when v 6= 0, most of those products include a term oscillating in t′. The only exceptions
are products where one of the terms is multiplied by its complex conjugate. If we limit our
investigation to time-averages 〈E〉, then the t′−oscillating terms can be ignored. Consider,
for example, the energy-density term 〈ReE+ ·ReE+〉,

ReE+ ·ReE+ =
1

4
(E+ + E?+)(E+ + E?+)

=
1

4
(E+ · E+ + E?+ · E?+ + 2E+ · E?+). (47)

The term E+ ·E+ is proportional to e2i(k1x−ωt) = e2iγ(v)((k1−ωv)x
′−(ω−k1v)t′) so it time averages

to 0. That is also the case for the term E?+ · E?+. As a consequence, we have,〈
ReE+ ·ReE+

〉
=

E+ · E?+

2
. (48)

Similarly, we can show that 〈ReE+ ·ReE−〉 = 0 and 〈ReB+ ·ReE−〉 = 0, etc., where the
time-average is with respect to t′ in ′-frame coordinates. The net result is that,

〈ReE ·ReE〉 =
E+ · E?+ + E− · E?−

2
, (49)

and so on.
Returning to eqs. (35)-(38), we can now derive that,〈

(ReE ′1)
2 + (ReB′1)

2
〉
≡ U

′+
1 + U

′−
1 , (50)〈

(ReE ′2)
2 + (ReB′2)

2 +Re(E ′3)
2 +Re(B′3)

2
〉
≡ U

′+
2,3 + U

′−
2,3, (51)

where,

U
′±
1 =

∣∣E±1 ∣∣2 +
∣∣B±1 ∣∣2

2
, (52)

U
′±
2,3 =

γ(v)2
[
(1 + v2)

(∣∣E±2 ∣∣2 +
∣∣B±2 ∣∣2 +

∣∣E±3 ∣∣2 +
∣∣B±3 ∣∣2)− 4vRe

(
E±2 B

?±
3 − E±3 B?±

2

)]
2

.

(53)
In these equations, the fields depend only on coordinates x and y but those arguments have
been suppressed for readability.

Now the energy can be computed by performing the integral in eq. (40), remembering
that the fields in the integrand should be replaced by the real parts of those fields. The
field components are given in eqs. (42) through (45). Since terms depend only on y and z,
the x-integral becomes an overall factor of L1/γ(v) multiplied by the constant coefficients
|E0

i /2|2 or |B0
i /2|2. Assuming for the remainder of this derivation that all wave numbers are
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nonzero,13 the y and z integrals each involve the square of either a sin or cos function, and
these therefore contribute a factor of (L1/2)(L2/2). What is left are the constant coefficients.
We write,

〈E ′〉 = E ′+ + E ′−, (54)

where,

E ′± =
L1L2L3

64γ(v)

{∣∣E0
1

∣∣2 +
∣∣B0

1

∣∣2 + γ(v)2
[(

1 + v2
) (∣∣E0

2

∣∣2 +
∣∣B0

2

∣∣2 +
∣∣E0

3

∣∣2 +
∣∣B0

3

∣∣2)
∓4vRe

(
E0

2B
?0
3 − E0

3B
?0
2

)]}
=

L1L2L3γ(v)

64

{(
1− v2

) (∣∣E0
1

∣∣2 +
∣∣B0

1

∣∣2)+
(
1 + v2

) (∣∣E0
2

∣∣2 +
∣∣B0

2

∣∣2 +
∣∣E0

3

∣∣2 +
∣∣B0

3

∣∣2)
∓4vRe

(
E0

2B
?0
3 − E0

3B
?0
2

)}
=

L1L2L3γ(v)

64

{∣∣E0
1

∣∣2 +
∣∣B0

1

∣∣2 +
∣∣E0

2

∣∣2 +
∣∣B0

2

∣∣2 +
∣∣E0

3

∣∣2 +
∣∣B0

3

∣∣2 (55)

−v2
(∣∣E0

1

∣∣2 +
∣∣B0

1

∣∣2 − ∣∣E0
2

∣∣2 − ∣∣B0
2

∣∣2 − ∣∣E0
3

∣∣2 − ∣∣B0
3

∣∣2)∓ 4vRe
(
E0

2B
?0
3 − E0

3B
?0
2

)}
.

This equation can be further simplified by using eq. (41) to write the components of B0 in
terms of the components of E0. Remember that k is perpendicular to both E0 and B0. So,
B0 ·B?0 = E0 ·E?0. This can be used to rewrite (closely following [9]) the term above which
is proportional to v2 as,∣∣E0

1

∣∣2 +
∣∣B0

1

∣∣2 − ∣∣E0
2

∣∣2 − ∣∣B0
2

∣∣2 − ∣∣E0
3

∣∣2 − ∣∣B0
3

∣∣2
= 2E0 · E?0 − 2

∣∣E0
2

∣∣2 − 2
∣∣B0

2

∣∣2 − 2
∣∣E0

3

∣∣2 − 2
∣∣B0

3

∣∣2
= 2E0 · E?0 − 2

∣∣E0
2

∣∣2 − 2
∣∣E0

3

∣∣2
− 2

ω2

(
k23
∣∣E0

1

∣∣2 + k21
∣∣E0

3

∣∣2 − 2k1k3Re
(
(E0

1E
?0
3

))
− 2

ω2

(
k22
∣∣E0

1

∣∣2 + k21
∣∣E0

2

∣∣2 − 2k1k2Re
(
E0

1E
?0
2

))
= 2E0 · E?0 − 2

∣∣E0
2

∣∣2 − 2
∣∣E0

3

∣∣2
− 2

ω2

[
k21
∣∣E0

3

∣∣2 + k21
∣∣E0

2

∣∣2 + k21
∣∣E0

1

∣∣2 − k21 ∣∣E0
1

∣∣2 − k21 ∣∣E0
1

∣∣2 + k21
∣∣E0

1

∣∣2 + k22
∣∣E0

1

∣∣2 + k23
∣∣E0

1

∣∣2
−2k1k3Re

(
E0

1E
?0
3

)
− 2k1k2Re

(
E0

1E
?0
2

)]
= 2E0 · E?0 − 2

∣∣E0
2

∣∣2 − 2
∣∣E0

3

∣∣2
− 2

ω2

[
k21E

0 · E?0 + ω2
∣∣E0

1

∣∣2 − 2k1Re
(
E0

1k · E?0
)]

= −2k21E
0 · E?0

ω2
. (56)

13 When one of the wave numbers is 0, that dimension does not involve any trignometric functions, and
the resultant overall factor from integration of the y and z integrals, is (L1/2)(L2), changing that overall
mode energy by a factor of 2.
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Then, substituting this result back into eq. (55), and recalling that B0 ·B?0 = E0 · E?0, we
get,

E ′± =
L1L2L3γ(v)

64

[
2

(
1 + v2

k21
ω2

)
E0 · E?0 ∓ 4vRe

(
E0

2B
?0
3 − E0

3B
?0
2

)]
=

L1L2L3γ(v)

32

(
1∓ vk1

ω

)2

E0 · E?0, (57)

and therefore,

〈E ′〉 =
L1L2L3γ(v)

16

[
1 +

(
k1
ω

)2

v2

]
E0 · E?0 = γ(v)

[
1 +

(
k1
ω

)2

v2)

]
E = γ(v)

(
1 + u21v

2
)
E ,(58)

writing u1 = k1/w for the 1-component of the phase velocity of the right-moving waves of
eqs. (42) - (44). This is consistent with the conclusion of eq. (30) for massless particles in a
cavity. If it were possible to treat a standing wave as a separate subsystem, then we would
have expected the boosted energy to be γ(v) times the rest energy.14 However, we see from
eq. (58), that 〈E ′〉 does not transform as expected.

The focus thus far has been on the time-average of E ′(t). A remaining question is whether
E ′(t′) is, in fact, time-dependent. If this quantity were the energy of a boosted subsystem,
then it should be time-independent. On the other hand, we already know that E ′(t′) isn’t the
Lorentz transformation of the rest energy, so there is no reason to expect time independence.
This can be checked directly, but requires keeping the kinds of cross-terms that were dropped
from eq. (47). The derivation is similar to what was done for the time-independent case, but
considerably messier, so only the results are presented. First, since time-dependence is now
explicit, we need to keep careful track of phases.

We only are concerned with the real parts of E± and B±, so to those ends we set,

E0 =
(∣∣E0

1

∣∣ eiφ1 , ∣∣E0
2

∣∣ eiφ2 , ∣∣E0
3

∣∣ eiφ3) . (59)

It will also be convenient later to define φ by,

E0 · E0 =
∣∣E0 · E0

∣∣ eiφ. (60)

Rewriting eq. (40), we have,

E ′(t′) =

∫ L1
γ(v)
−vt′

−vt′
H̃′(t′, x′) dx,′ (61)

where,

H̃′(t′, x′) =

∫ L2

0

∫ L3

0

H′(t′, x′, y′, t′) dy′ dz′, (62)

14Actually, this statement would require knowing that the rest-frame momentum of the standing wave, is
zero. For that, we need the Poynting vector. However, the Poynting vector is a sum of equal but opposite
contributions from the left- and right-moving waves that make up the standing wave and so is, in fact, zero.
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and,

H′(t′, x′, y′, z′) =
1

2

(
|ReE′(t′, x′, y′, z′)|2 + |ReB′(t′, x′, y′, z′)|2

)
. (63)

H̃′(t′, x′) =
L2L3

32
γ2(v)

{∣∣E0 · E0
∣∣ [−(v +

k1
ω

)2

cos(2ω+t′ + 2k+1 x
′ − φ)

−
(
v − k1

ω

)2

cos(2ω−t′ − 2k−1 x
′ − φ) + 2v2

(
1−

(
k1
ω

)2
)

cos(2γ(v)ω(t′ + vx′)− φ)

]

−2E0 · E?0

[(
1−

(
k1
ω

)2
)

cos (2γ(v)k1(x
′ + vt′))−

(
1 +

(
k1
ω

)2

v2

)]

−4
∣∣E0

1

∣∣2 v2 [cos (2γ(v)ω(t′ + vx′)− 2φ1)− cos (2γ(v)k1(x
′ + vt′))]

}
, (64)

where,

ω± = γ(v)(ω ± vk1), k±1 = γ(v)(k1 ± vω). (65)

Finally, performing the integral in eq. (61),

E ′(t′) =
γ(v)L2L3

64ω2

{∣∣E0 · E0
∣∣ [−(k1 + vω)

(
sin

(
2

γ(v)
(ωt′ + k+1 L1)− φ

)
− sin

(
2ωt′

γ(v)
− φ
))

+(k1 − vω)

(
sin

(
2

γ(v)
(ωt′ − k−1 L1)− φ

)
− sin

(
2ωt′

γ(v)
− φ
))

+2vω

(
1−

(
k1
ω

)2
)(

sin

(
2ω

(
t′

γ(v)
+ vL1

)
− φ
)
− sin

(
2ωt′

γ(v)
− φ
))]

−4ωv2
∣∣E0

1

∣∣2(sin

(
2ω

(
t′

γ(v)
+ vL1

)
− 2φ1

)
− sin

(
2ωt′

γ(v)
− 2φ1

))}
+E0 · E?0L1L2L3γ(v)

16

(
1 +

(
k1
ω

)2

v2

)
.(66)

In deriving this equation, some terms integrated to 0 because of the fact that 2k1 = 2nπ/L1.
As a specific example, consider the mode with wave number (1, 0, 1) and E ≡ −iE0

2 , and
for simplicity consider a cubic box of length L, so that Li = L. Define k ≡ π

L
.15 The result

E ′(1,0,1) in this case is,

E ′(1,0,1)(t′) =
L2

4

∫ L
γ(v)
−vt′

−vt′
H̃′(x′, t′) dx′

=
E2L3

64π
√

1− v2

{(
1 +
√

2v
)

sin

√
2π
[(√

2 + 2v
)
L+ 2t′

√
1− v2

]
L

15Notice the awkward convention here. Usually, the term k is set to ω but in the equations that follow,
it will be convenient to define it as shown.
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+
(
−1 +

√
2v
)

sin

√
2π
[(
−
√

2 + 2v
)
L+ 2t′

√
1− v2

]
L

−
√

2v

[
sin

2
√

2π
(
vL+ t′

√
1− v2

)
L

+ sin
2
√

2πt′
√

1− v2
L

]

+4π(v2 + 2)

}
. (67)

Figure 1: E ′(1,0,1)(t) for E = 1, v = 0.5 and L = 10.

145

150

155

160

165

170

0

0
.6

1
.2

1
.8

2
.4 3

3
.6

4
.2

4
.8

5
.4 6

6
.6

7
.2

7
.8

8
.4 9

9
.6

1
0
.2

1
0
.8

1
1
.4 1
2

1
2
.6

1
3
.2

En
er
gy

Time

Energy of Lowest Frequency Mode in a 
Boosted Frame of Reference

As can be seen in Figure 1, the boosted energy indeed is time-dependent. This phe-
nomenon shouldn’t be surprising, since a similar effect was mentioned at the end of Section
(1.1) with particles in a box.

Would it be possible to construct an experiment capable of detecting this oscillatory
behavior, or for that matter, the transformation properties of the time-averaged field energy?
This could be done in principle by inserting an appropriate detector in a cavity. Of course,
in that case, the detector should be at rest relative to the moving reference frame – that is,
moving relative to the cavity. For the experiment to succeed, the cavity fields should be well
approximated as those of a single mode, which means that blackbody radiation in the cavity
must be negligible, i.e., kT � ~ω where T is the absolute temperature of the cavity.

If instead, the cavity fields were well approximated by blackbody radiation, then accord-
ing to the classical analysis in sec. 2.4 of [9] and the quantum analysis (which also treats
Casimir effects) of [11], eq. (58) becomes, for a cubical cavity,

〈E ′〉 = γ(v)

(
1 +

u21v
2

3

)
E , (68)

which also should be observable in an experiment.

Summary

It has been shown, through a detailed 3-dimensional calculation, that in a rectangular box
with perfectly reflecting walls, the Lorentz-transformed electromagnetic-field energy, E ′, os-
cillates in time. We have also shown that the time-average energy of an electromagnetic
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normal mode satisfies the Lorentz transformation equation 〈E ′〉 =
(
1/
√

1− v2
)

(1 + u21v
2) E ,

where v is the relative velocity of the moving reference frame (the ′ frame) in the x-direction
(of the rest frame). These results demonstrate that the electromagnetic field energy inside
the box does not transform as the first component of a Lorentz 4-vector.

It was shown that a similar term is present when considering the Lorentz transformation
of the total 4-momentum of particles bouncing within a box. In that case, the origin of the
extra term is easily related to the non-simultaneity of opposite-wall collisions in a frame in
which the box is moving. We also examined what 4-momentum is required in order to keep
the box walls rigid while internal particles collide with those walls. As expected, it turns
out that when adding the total internal 4-momentum to the total external 4-momentum,
the resulting 4-vector transforms as a Lorentz 4-vector. For example, if the walls are held
in place by collisions of external particles, those particles’ 4-momenta can be compared be-
tween reference frames, leading to the above conclusion that the system total 4-momentum
transforms as a Lorentz 4-vector. Since the external system is independent from the inter-
nal system, it may be possible to generalize that conclusion from the case when the total
internal 4-momentum arises from bouncing particles, to the case that the total internal 4-
momentum comes from the electromagnetic field. However, additional care may be required
when considering contributions from the walls.
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