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1 Problem

Show that the amplitude of radiation from a bounded three-dimensional source falls off as
f(θ, φ)/r in the far zone, where the angular factor f is independent of the radius r from a
characteristic point in the source.

2 Solution

The stated result is likely considered to be “obvious” by most physicists [1, 2]. Yet, there
have been recent claims [3]-[7] that electromagnetic waves from a bounded source can be
generated whose amplitude falls off as 1/

√
r over portions of solid angle in far zone.

Mathematically, there exist cylindrical waves whose amplitude falls off as 1/
√
ρ, where ρ

is the radial distance in a cylindrical coordinate system whose axis is the axis of symmetry of
the source, which latter has infinite extent along the axis. An example is Čerenkov radiation;
however, the amplitude of Čerenkov radiation from a finite path length falls off as 1/r for
r large compared to the path length [8]. Also, mathematical plane waves, whose amplitude
is independent of distance only their direction of propagation, can be generated by sources
of infinite extent in the plane perpendicular to the direction of propagation. An example
of plane waves for which misconceptions abound is the case of the so-called Bessel beam
[9, 10, 11].1

However, when the source of the waves is localized to a bounded three-dimensional region,
there are restrictions on the character of the waves. One aspect of waves from a bounded
source that is too often overlooked is that such waves cannot be unipolar [15]. Here, we
reconfirm that the amplitude of waves from a bounded source fall off as 1/r as distances
large compared to the size of the source.2

We will make the desired demonstration in the context of scalar diffraction theory, which
gives a prescription for calculation of the amplitude of a wave of a pure frequency ω based
on knowledge of the amplitude of the wave on a surface that encloses the observation point,
provided that there are no charges or currents within the enclosed volume [1].

We suppose that the source of the waves is in the vicinity of the origin of a spherical
coordinate system (r, θ, φ), and that the source lies entirely within a sphere of radius r0. We
take this sphere (plus the “sphere at infinity”) to be the surface that encloses the point of

1A related class of waves (which also require unbounded sources) are so-called “electromagnetic missiles”
[12, 13], for which the energy falls off with distance more slowly than 1/r2 in some directions.

2A different argument that the amplitude falls off as 1/r for a charge in uniform circular motion with
speed v > c/n in a medium of index of refraction n is given on p. 4 of [14].
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observation at radius r � r0. Since the amplitude of the wave on the “sphere at infinity”
is negligible, the prescription of the Huygens-Kirchoff diffraction integral for the Fourier
component of frequency ω = kc of the wave is,

ψ(r) =
k

2πi

∫
r2
0 d cos θ′dφ ψ(r0, θ

′, φ′)
eikR

R
, (1)

where R = r − r0 is the vector distance between the source and observation points. For
r � r0, we can approximate distance R as,

R = r − r0 cosα, (2)

where α(θ, φ, θ′, φ′) is the angle between vectors r and r0. Making the usual approximation
that in the far zone the factor R in the denominator of eq. (1) can be approximated by r,
we have,

ψ(r) ≈ eikr

r

kr2
0

2πi

∫
d cos θ′dφ ψ(r0, θ

′, φ′)e−ikr0 cosα ≡ eikr

r
F (r0, θ, φ). (3)

That is, the amplitude of the wave at a point (r, θ, φ) in the far zone is a spherical wave
modulated by an angular factor F (r0, θ, φ). The amplitude falls off as 1/r for all angles (θ, φ)
as claimed, independent of the details of the source inside radius r0. This result holds even
if amplitude ψ(r0, θ

′, φ′) is “singular” for some angles (θ′, φ′) as might happen formally if the
source generates a kind of Čerenkov radiation.

3 Discussion

The Huygens-Kirchoff integral (1) is only an approximation. In what ways might it give an
inaccurate representation of waves in the far zone?

The replacement of distance R by r in the denominator of eq. (1) is not strictly correct.
It would be more proper to expand 1/R is a power series of terms (1/r)n where n = 1,2,3,...
This reminds us that the amplitude of a field can fall off more rapidly than 1/r, and that
even in the far zone there is some evidence of near-zone behavior where the fields fall off as
1/r2 (or faster).

Further, there can be debate as to whether eq. (1) should be modified by the inclusion of
an “obliquity factor” (see, for example, sec. 10.5 of [1]), which changes slightly the character
of the angular integration. However, the details of the angular obliquity factor do not affect
the radial dependence of the calculation.

Hence, the usual approximations in the Huygens-Kirchoff theory do not lead one to doubt
that wave amplitudes fall off as 1/r in the far zone.

Ultimately, this behavior can be ascribed to conservation of energy. In the far zone, the
wave energy that lies within some element of solid angle dΩ propagates only within that
solid angle. Therefore, conservation of the field energy, U ∝ E2r2 dΩ, in that solid angle
requires that E ∝ 1/r.

Hence it is very hard to understand what Ardavan et al. mean by their claim [3, 7] that
The focused wave packets that embody the non spherically decaying pulses are constantly
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dispersed and reconstructed out of other waves, so that the constructive interference of their
constituent waves takes place within different solid angles on spheres of different radii r. The
integral of the flux of energy across a large sphere centered on the source is the same as the
integral of the flux of energy across any other sphere that encloses the source. The strong
fields that occur in focal regions are compensated by weaker fields elsewhere, so that the
distribution of the flux of energy across such spheres is highly nonuniform and r dependent.

Such wording might apply to considerations in the near zone, i.e., within a focal length
of the wave pattern possibly created by “lenslike” structures within the sphere of radius r0.
But, at distances larger than that focal length, the wave is diverging and field energy neither
enters nor leaves any given element of solid angle with the consequence that the field falls
off as 1/r for all angles.
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