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1 Problem

Consider a particle with charge e and momentum P = P, + P, (P, # 0) that is moving on
average in the z direction inside a solenoid magnet whose symmetry axis is the z axis and
whose magnetic field strength is B,. Inside the solenoid, the particle’s trajectory is a helix
of radius R, whose center is at distance Ry from the magnet axis.

The longitudinal momentum P, is so large that when the particle reaches the end of the
solenoid coil, it exits the field with little change in its transverse coordinates. This behavior
is far from the adiabatic limit in which the trajectory spirals around a field line.

When the particle exits the solenoid, the radial component of the magnetic “fringe” field
exerts azimuthal forces on the particle, and, in general, leaves it with a nonzero azimuthal
momentum, FPy. Deduce a condition on the motion of the particle when within the solenoid,
i.e.,on R, Ry, P., P, and B,, such that the azimuthal momentum vanishes as the particle
leaves the magnetic field region. Your result should be independent of the azimuthal phase
of the trajectory when it reaches the end of the solenoid coil.

Hint: Consider the canonical momentum and/or angular momentum.

2 Solution

The key to this problem is conservation of canonical momentum, P 4 eA /¢, where A is the
vector potential (in Gaussian units).

It turns out to be even more effective to consider the canonical angular momentum, which
isL=rx (P+eA/c).

We want P, = 0 outside the magnet. This implies L, = rP; = 0 also. Therefore, we
need r(Py + eAy/c) = 0 inside the magnet.

A solenoid magnet with field B, has vector potential Ay = rB,/2. To see this, recall
that the integral of the vector potential around a loop is equal to the magnetic flux through
the loop: 27rAs = 7r?B,.

For a particle with average momentum in the z direction, its trajectory inside the magnet
is a helix whose center is at some radius R (called Ry in the statement of the problem)
from the magnetic axis. The radius Rp (called R in the statement of the problem) of the
helix can be obtained from F' = ma:
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The direction of rotation around the helix is in the —z direction (Lenz’ law).

Since the canonical angular momentum is a constant of the motion, we can evaluate it
at any convenient point on the particle’s trajectory. In particular, we consider the point at
which the trajectory is closest to the magnetic axis. As shown in Fig. 1, this point obeys
r = Rg — Rp, and so

eB,

B.
L. = (Re — Re) PL + = ¢

(R — Rp)* = (Rg — Ry) == (3)

C

Note that R% — R% is the product of the closest and farthest distances between the trajectory
and the magnetic axis.

Hence, the canonical angular momentum vanishes for motion in a solenoid field if and
only if R = Rp, i.e., if and only if the particle’s trajectory passes through the magnetic
axis.
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Figure 1: The projection onto a plane perpendicular to the magnetic axis
of the helical trajectory a charge particle of transverse momentum P. The
magnetic field B, is out of the paper, so the rotation of the helix is clockwise for
a positively charged particle. a) The trajectory does not contain the magnetic
axis, and L, > 0. b) The trajectory contains the magnetic axis, and L, < 0.

We also see that if the trajectory does not contain the magnetic axis, the canonical angular
momentum is positive; while if the trajectory contains the magnetic axis, the canonical
angular momentum is negative.



