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1 Problem

Estimate the capacitance C and self inductance L of a short, center-fed, linear dipole antenna
whose arms each have length h and radius a. Also estimate the self inductance of a small
loop antenna of major radius b and minor radius a.

For completeness, consider also the real part, its so-called radiation resistance, Rrad, of
the antenna impedance in the approximation of perfect conductors.

2 Solution

2.1 Short, Center-Fed, Linear Dipole Antenna

This solution follows sec. 10.3 of [1], which can be traced back to [2].

2.1.1 Capacitance

The key assumption is that the electric field lines from one arm of the dipole antenna to the
other follow semicircular paths (the principal mode), as shown in the figure below.1

If so, all the field lines emanating from charge dQ in interval dr at distance r from the
center of the antenna cross a surface of area 2πr dr sin θ that lies on a cone of half angle θ,
so the electric field strength at (r, θ) is,

E =
dQ/dr

2πε0r sin θ
. (1)

1On the right is Fig. 86 by Poincaré [2].
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The voltage difference between the two arms of the antenna is,2

ΔV = 2

∫ π/2

θmin

Er dθ =
dQ/dr

πε0

∫ π/2

a/r

dθ

sin θ
=
dQ/dr

πε0
ln[tan(θ/2)]

π/2
a/r =

dQ/dr

πε0
ln(2r/a). (2)

This voltage difference should be independent of position along the antenna.3 The charge
distribution dQ/dr is indeed constant to a good approximation for short dipole antennas, but
the factor ln(2r/a) = − ln(θmin/2) is constant only for a biconical dipole antenna (as much
favored theoretically by Schelkunoff [1]). A reasonable approximation for a linear dipole
antenna is to use r = h/2 as a representative length in eq. (2), which leads to the estimate,

ΔV ≈ dQ/dr

πε0
ln(h/a). (3)

The corresponding capacitance per unit length along the antenna is,

dC

dr
=

ΔV

dQ/dr
≈ πε0

ln(h/a)
, (4)

and the total capacitance is,

C ≈ πε0h

ln(h/a)
. (5)

This estimate ignores the contribution to the capacitance of roughly πε0a
2/d associated with

the electric field in the gap d between the terminals of the antenna, as is reasonable when
d ≈ a since then ln(h/a) � h/a ≈ dh/a2.

2.1.2 Inductance

For a quick estimate of the self inductance L of the antenna, we note when the arms carry
current I , the magnetic field B near the conductors varies with distance r⊥ from as arm as,

B ≈ μ0I

2πr⊥
. (6)

The magnetic flux Φ =
∫

B · dArea = LI associated with the linear antenna is,

Φ ≈ Kh

∫ h

a

B dr⊥ ≈ μ0hI

2π
ln
h

a
, (7)

where we note that the current drops from I to 0 over length h of each arm, and K is a
constant of order 1. Then, our rough estimate of the self inductance L is,

L =
Φ

I
≈ μ0h

2π
ln
h

a
. (8)

2In general the electric field is related to the scalar and vector potentials by E = −∇V − ∂A/∂t =
−∇V − iωA, assuming a time dependence of the form eiωt. Then,

∫ 2

1
E · dl = V1 − V2 − iω

∫ 2

1
A · dl.

However, close to a small linear dipole antenna the electric field is much larger than the magnetic field (see,
for example, [3]), and the contribution of the vector potential to the electric field in negligible in this region.

3The vanishing of the tangential component of the electric field along the (ideal) conductor implies that
this conductor is an equipotential only if the vector potential can be neglected. For examples where this
does not hold, see [4, 5].
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2.1.3 Reactance

The reactance of a short linear antenna (h� λ) is largely due to its capacitance,

Xsmall linear = ωL− 1

ωC
≈ − 1

ckC
≈ − ln(h/a)

πε0ckh
= −Z0

π

ln(h/a)

kh
= −Z0

π2

λ

2h
ln(h/a), (9)

where ω = kc = 2πc/λ, c = 1/
√
ε0 μ0 is the speed of light in vacuum, and,

Z0 =

√
μ0

ε0
= μ0 c =

1

ε0 c
= 377 Ω. (10)

The reactance X of eq. (9) falls with increasing length h of the arms of the antenna, and
vanishes when,

ω =
1√
LC

≈
√

2π

Kμ0h

1

πε0h
=

√
2

K

c

h
= kc =

2πc

λ
, i .e., h ≈

√
2

K

λ

2π
. (11)

A linear dipole antenna is known to have “resonance” (X = 0) when half-length h ≈ λ/4.
This tells us that K ≈ 8/π2 = 0.81 (and that our ”rough” estimates were rather good).

2.1.4 Relation between Reactance and “Free Oscillation”

As an aside, we note that frequencies at which the terminal reactance vanishes correspond
to those of “free oscillation” of the antenna (with its terminals shorted).

In a “free oscillation”,4 radiation is ignored and the (near) fields are standing waves that
obey the Helmholtz equation, (∇2 + k2)ψ = 0, where ψ is any scalar component of the
electric and magnetic fields. Electromagnetic energy is stored in the (near) fields, which
oscillates between “electric” and “magnetic” terms, there being no exchange of energy with
the perfect conductor.

For driven oscillations of a conductor, a nonzero terminal reactance implies an exchange
of energy between the energy/voltage source and the (near) electromagnetic fields.

Thus, if the reactance is nonzero at some frequency, that frequency cannot correspond to
a “free oscillation” (for which there is no exchange of energy between fields and conductors).

2.2 Small Loop Antenna

2.2.1 Inductance

One definition of a small loop antenna is that the spatial variation of the current around
the loop can be neglected. In this case the self inductance L is essentially that of a circular
loop/torus of, say, major radius b and minor radius a, supposing that all the current in on
the surface because of the skin effect.

For a quick estimate we note when the loop carries current I the magnetic field near the
conductor varies with distance r⊥ roughly as,

B ≈ μ0I

2πr⊥
, (12)

4“Free oscillations” of (perfect) conductors were perhaps first discussed in [6]. See also, [7].
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so the magnetic flux linked by the loop is,

Φ = LI ≈ 2πb

∫ b

a

B dr⊥ ≈ μ0bI ln
b

a
, (13)

and the self inductance L is,

L ≈ μ0b ln
b

a
= μ0b

(
ln

8b

a
− 2.08

)
. (14)

A more exact calculation using toroidal coordinates [8] shows that the number 2.08 = ln 8
in eq. (14) is actually 2 when b� a.

2.2.2 Capacitance

For a small loop antenna, the current is uniform around the loop, so there is no charge
accumulation on the loop, and no associated capacitive reactance.

A loop antenna is driven at two terminals on the loop, with a small gap between them.
A small capacitance, of order ε0a is associated with this gap,5 which is usually neglected in
discussions of the reactance of the loop, which then is essentially just its inductive reactance.6

As the size of the loop approaches a wavelength (or larger), the current, and hence also the
surface charge density, varies around the ring, and there is an associated capacitive reactance.
However, it is not obvious that this reactance is 1/iωC where C is the DC capacitance of a
ring (with respect to “infinity”).

Instead, we proceed by noting that a loop antenna is self resonant (reactance = 0) when
its circumference 2πb is approximately equal to nλ for integer n [11, 12]. For n = 1, we have
that,

LC =
1

ω2
=

λ2

4π2c2
≈ b2

c2
= ε0μ0b

2. (15)

Then, using eq. (13) for the self inductance, we infer that the effective capacitance of the
loop is,

C ≈ ε0μ0b
2

L
=

ε0b

ln b
a

. (16)

This is larger than the DC capacitance by a factor of 4π2, according to the estimate of
eq. (20) below.

DC Capacitance

For a quick estimate of the DC capacitance C we note when the loop supports charge Q,
the electric field near the conductor varies with distance r⊥ roughly as,

E ≈ Q/2πb

2πε0r⊥
, (17)

5See, for example, [10].
6A very different estimate is given in sec. 10-12 of [1], assuming that it is meaningful to consider the loop

to be a capacitor consisting of two half loops; however, the current around a small loop is uniform, so there is
no charge distribution around the loop, except at the terminals, and the estimate of [1] seems inappropriate.
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so the electric field energy is,

Ue =
Q2

2C
=

∫
ε2E

2

2
dVol ≈ 2πb

∫ b

a

ε0E
2

2
r⊥ dr⊥ ≈ Q2

2

1

8π3ε0b
ln
b

a
, (18)

and the capacitance C is,

C ≈ 8π3ε0b

ln b
a

. (19)

However, this estimate is not very accurate, and a better estimate of the DC capacitance is
based on analysis in toroidal coordinates [9],

C ≈ 4π2ε0b

ln 8b
a

≈ 4π2ε0b

ln b
a

≈ 4π2ε0μ0b
2

L
=

4π2b2

c2L
. (20)

2.2.3 Reactance

The capacitive reactance of a small loop is, using eq. (16),

|XC | =
1

ωC
=

L

ε0μ0ωb
2

=
c2ωL

b2ω2
=

4π2XLλ
2

b2
, (21)

which is much less that the inductive reactance XL = ωL. So, as previously noted, the
capacitive reactance of small loop antennas is typically neglected.

The reactance of a small loop antenna is essentially that due to its self inductance,

Xsmall loop ≈ ωL ≈ μ0ωb ln
b

a
= μ0ckb ln

b

a
= Z0

2πb

λ
ln
b

a
� Z0. (22)

A Appendix: Radiation Resistance of Small Antennas

For completeness, we include the well-known calculations of the radiation resistance Rrad of
small antennas, noting that the time-average radiated power P is related to the peak current
I0 at the antenna terminals by,

P =
I2
0Rrad

2
=
μ0 |p̈|2
12πc

=
μ0 ω

4 |p0|2
12πc

, i .e., Rrad =
μ0 ω

4 |p0|2
6πcI2

0

, (23)

where p0 is the peak electric dipole moment of the antenna (or p0 = m0 in case the antenna
has peak magnetic dipole moment m0).

A.1 Short Linear Antenna

A short linear antenna of half length h along the z-axis has electric dipole moment p related
to its linear charge density ρ by,

p =

∫ h

−h

ρz a dz. (24)
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The charge density is related to the current distribution,

I(z, t) ≈ I0(1 − |z| /h) eiωt (|z| < h), (25)

by the continuity equation,

ρ̇ = −dI
dz

≈ ±I0
h
eiωt, (26)

so that,

ρ = ∓ iI0
ωh

eiωt (|z| < h), (27)

and,

p0 = − iI0h
ω

(28)

from eq. (24). Then, according to eq. (23) the radiation resistance is, recalling eq. (11),7

Rrad =
μ0 ω

4 |p0|2
6πcI2

0

=
μ0 ω

2h2

6πc
=
πμ0 c (2h)2

6
=
πZ0

6

(2h)2

λ2 = 197
(2h)2

λ2 Ω. (29)

For an (“unmatched”) small linear antenna with terminal impedance Z ≈ iX and reac-
tance X given by eq. (9), the time-average radiated power when driven by a voltage source
V0 is, noting that I0 = |V0/Z|,

Plinear,unmatched =
V 2

0 Rrad

2 |Z|2 ≈ V 2
0 Rrad

2X2
≈ π5V 2

0

12Z0 ln2(h/a)

(2h)4

λ4 . (30)

If the small linear antenna is “matched” to a line of (real) impedance Zline (� Rrad) then,

Plinear,matched =
V 2

0 Rrad

2Z2
line

≈ πV 2
0 Z0

12Z2
line

(2h)2

λ2 . (31)

A.2 Small Loop Antenna

A small loop antenna (of radius b) has azimuthally symmetric current I(φ, t) = I0 e
−iωt, such

that the peak magnetic dipole moment is,

m0 = πb2I0, (32)

and radiation resistance,

Rrad =
μ0ω

4 |m0|2
6πc3I2

0

=
πμ0ω

4b4

6c3
=
πμ0c

6

(2πb)4

λ4 =
πZ0

6

(2πb)4

λ4 . (33)

7The approximation (25) is not very accurate for “resonance” with h ≈ λ/4, for which eq. (29)
gives Rrad,resonance ≈ 197/4 = 49 Ω. At “resonance”, I(z, t) ≈ I0 cos kz eiωt, so ρ̇ ≈ kI0 sin kz eiωt,
ρ ≈ −iI0 sin kz eiωt/c, p0 ≈ −2I0c/ω2, Rrad ≈ 2μ0c/3π = 2Z0/3π = 80 Ω, which is closer to the actual value
of 71 Ω at “resonance”.
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For an (“unmatched”) small loop antenna with reactance X given by eq. (22), the time-
average radiated power when driven by a voltage source V0 is,

Ploop,unmatched ≈ V 2
0 Rrad

2X2
≈ πV 2

0

12Z0 ln2(b/a)

(2πb)2

λ2 . (34)

If the small loop antenna is “matched” to a line of impedance Zline then,

Ploop,matched =
V 2

0 Rrad

2Z2
line

≈ πV 2
0 Z0

12Z2
line

(2πb)4

λ4 . (35)

Thus, a “matched”, small loop antenna of circumference 2πb radiates much less power than
a “matched”, small linear antenna of total length 2h = 2πb.8

B Comments on the Wave Speed

In the field theory of electromagnetism, electromagnetic waves propagate in the fields, which
in the case of good conductors are nonzero mainly outside the conductors. In this view,
it a “natural” that the speed of electromagnetic waves is that associated with the medium
surrounding the conductors, which differs little from vacuum in most antenna applications.
Then, the speed of waves in (or better, on the surface of) the conductors of an antenna is
close to the speed of light in vacuum.

We illustrate this for self-resonant linear and loop antennas, which have zero reactance
by definition. For linear antennas, the smallest self-resonant antennas have arms of length
h ≈ λ/4, while for loop antennas the circumference 2πb is approximately the wavelength λ.
For the linear self-resonant antenna, the current standing wave has the form cos kz cosωt =
(1/2([cos(kz − ωt) + cos)kz + ωt)], where the wave number k = 2π/h is very close to
2π/λ = c/ω, so the speed of the current wave is ω/k ≈ c. Similarly, the traveling wave of
current on the self-resonant loop has the form cos(ks±ωt), where s is the arc length around
the loop of radius b ≈ λ, so k = 2π/b ≈ c/ω and again the wave speed is ω/k ≈ c.

On the other hand, an antenna can be thought of as the final element in the transmission
line from the power source. In the circuit theory of transmission lines (due to Heaviside
(1876) [13], the speed of waves along a two-conductor transmission line is,

v = 1/
√
L̃C̃ , (36)

where L̃ and C̃ are the capacitance per unit length along the line.
If we used the estimates (5) and (8) for the capacitance and inductance of a linear antenna

with arms of length h, the transmission-line formula (36) would suggest that the wave speed
of the current on each arm is vlinear = 1/

√
LC/h2 = 1/

√
ε0μ0/2 =

√
2 c, while use of the

estimates (14) and (16) for a loop of circumference 2πb would suggest that the wave speed
is vloop = 1/

√
LC/(2πb)2 = 2π c.

These inconsistencies reflect that the transmission-line formula (36) holds only in the limit
of a very long line of two parallel conductors. It is impressive that the earliest consideration

8An “unmatched”, small loop antenna of circumference 2πb radiates more power than an “unmatched”,
small linear antenna of total length 2h = 2πb provided 2πb <∼ λ/10, but the radiated power is quite small.
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of waves on conductors, by Kirchhoff in 1857 [14], via consideration of short wire segments
in the action-at-a-distance theory of Weber [15], deduced that the wave speed was c.9

References

[1] S.A. Schelkunoff and H.T. Friis, Antennas, Theory and Practice (Wiley, 1952),
http://kirkmcd.princeton.edu/examples/EM/schelkunoff_friis_52.pdf
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