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1 Problem

Consider a parallel-plate capacitor whose plates are held apart by a nonconducting slab of
unit (relative) dielectric constant and unit (relative) magnetic permeability.1 Discuss the
energy, momentum and stress in this (isolated) system when at rest and when moving with
constant velocity parallel or perpendicular to the electric field.

Does the system contain hidden momentum, Phidden, defined for a subsystem by,

Phidden ≡ P − Mvcm −
∮

boundary

(x− xcm) (p− ρvb) · dArea, (1)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass,” U is its total
energy, c is the speed of light in vacuum, xcm is its center of mass/energy, vcm = dxcm/dt,
p is its momentum density, ρ = u/c2 is its “mass” density, u is its energy density, and vb is
the velocity (field) of its boundary?2

Fringe-field effects can be ignored. The velocity can be large or small compared to the
speed of light.

2 Solution

This problem is concerned with the relativistic transformation of properties of the capacitor.
It represents a macroscopic application of the concepts of “Poincaré stresses” [3] that were
introduced into classical models of the electron. Versions of this problem have also appeared
in [4]-[10].

We first note that the isolated system of the capacitor (including the dielectric material
between its plates) and its electromagnetic field has a conserved energy and 3-momentum,
which form a 4-vector. Then, the system as a whole obeys P = Mvcm, where M = γM0

is the “relativistic” mass, γ = 1/
√

1 − v2
cm/c2 and M0 is the rest mass of the system. The

isolated system has no boundary, so according to eq. (1), the system as a whole has no
“hidden” momentum, Phidden = P− Mvcm = 0.

In the following we consider the system to have two subsystems, its electromagnetic field,
and its “mechanical” components, which may contain “hidden” momentum.

1The use of unit dielectric constant and unit permeability avoids entering into the interesting controversy
as to the so-called Abraham and Minkowski forms of the energy-momentum-stress tensor [1].

2The definition (1) was inspired by a private communication from Daniel Vanzella. See also [2].
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We suppose that the capacitor supports a uniform electric field E� = E� ẑ between its
plates, in its rest frame, and we ignore the fringe field.3 Taking the (relative) dielectric
constant ε of the material between the plates to be unity, the electric displacement is given
by D� = E� (in Gaussian units). The macroscopic magnetic fields vanish in the capacitor’s
rest frame, B� = H� = 0, noting that the relative permeability is μ = 1.

Associated with these electromagnetic fields is the 4-dimensional, macroscopic (symmet-
ric) electromagnetic energy-momentum-stress tensor (secs. 32-33 of [12], sec. 12.10B of [13]),

Tμν
EM =

⎛
⎝ uEM cpEM

cpEM −T ij
EM

⎞
⎠ , (2)

where indices μ and ν take on values 0, 1, 2, 3, spatial indices i and j take on values 1, 2, 3,
uEM is the electromagnetic field energy density,

uEM =
E2 + B2

4π
, (3)

pEM is the electromagnetic momentum density,

pEM =
E ×B

4πc
, (4)

and T ij
EM is the 3-dimensional electromagnetic stress tensor.

T ij
EM =

EiEj + BiBj

4π
− δij

E2 + B2

8π
. (5)

In the rest frame of the capacitor the electromagnetic energy-momentum-stress tensor
has components,

T�μν
EM =

⎛
⎜⎜⎜⎜⎜⎜⎝

E�2

8π
0

E�2

8π

0 E�2

8π

−E�2

8π

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

in the region between the capacitor plates. The nonzero diagonal elements T�11, T�22 and
T�33, indicate that there are internal electric forces on, and stresses in, the material between
the capacitor plates. Thus, we are led to consider also the mechanical energy-momentum
stress tensor,

Tμν
mech =

⎛
⎝ umech cpmech

cpmech −T ij
mech

⎞
⎠ , (7)

3As will be seen in sec. 2.2 below, for v ⊥ E� this approximation leads to expressions for the total energy
and momentum of the system that do not form a 4-vector, so there is limited validity to the results in that
section.
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where the mechanical energy density is umech = ρmc2, the mass/energy density ρm includes
the term Umech/c

2 where Umech is the mechanical energy density associated with nonzero
mechanical stresses, the density of mechanical momentum is pmech, and T ij

mech is the 3-
dimensional mechanical stress tensor.

The capacitor plates are attracted to one another with force/area in the z�-direction of
E�2/8π = T�zz . If the material between plates is constrained not to expand transversely,
then in the rest frame of the isolated capacitor, the mechanical energy-momentum-stress
tensor (in the region between the capacitor plates) has components,4

T�μν
mech =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ�
mc2 0

σ
1−σ

E�2

8π

0 σ
1−σ

E�2

8π

E�2

8π

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

where −1 < σ ≤ 1/2 is the so-called Poisson ratio of the medium. σ = 1/2 corresponds to a
perfect fluid/ideal gas, which requires containing walls that also have a mechanical energy-
momentum stress tensor. Here, we avoid this complication by supposing that σ = 0, such
that no containing box is required.5

The total energy-momentum-stress tensor is the sum of the electromagnetic and mechan-
ical tensors (2) and (7). In the rest frame of the capacitor the total energy-momentum-stress
tensor has components,

T�μν
total = T�μν

EM + T�μν
mech =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ�
mc2 + E�2

8π
0 0 0

0 E�2

8π
0 0

0 0 E�2

8π
0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9)

We interpret the component T�00 as implying the total mass density in the rest frame to be,

ρ�
total = ρ�

m +
E2

8πc2
, (10)

where ρ�
m includes a contribution to the mechanical mass due to the mechanical stress.

2.1 The Capacitor Has Velocity v ‖ E�

In a frame where the capacitor has constant velocity v = v ẑ, the electric and magnetic fields
between its plates are given by the transformation,

E‖ = E�
‖ = E� ẑ, (11)

4See, for example, eq. (5.13), p. 14 of [14].
5The case of an ideal gas in a box is discussed in [8, 15].

3



E⊥ = γ(E�
⊥ − v

c
× B�) = 0, (12)

B‖ = B�
‖ = 0, (13)

B⊥ = γ(B�
⊥ +

v

c
× E�) = 0, (14)

where γ = 1/
√

1 − v2/c2. That is, (ignoring fringe fields) the electromagnetic fields have the
same values inside the capacitor in its rest frame and in frames where the capacitor moves
with velocity v parallel to E. Hence, the electromagnetic energy-momentum-stress tensor
has the same component values in all such frames,

Tμν
EM = T�μν

EM . (15)

It is useful to confirm this result via a Lorentz transformation of the stress tensor. The
transformation Lz from the rest frame to a frame in which the capacitor has velocity v ẑ can
be expressed in tensor form as,

Lμν
z =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16)

where β = v/c. Then, the transform of a tensor,

T�μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

T�00 0 0 0

0 T�11 0 0

0 0 T�22 0

0 0 0 T�33

⎞
⎟⎟⎟⎟⎟⎟⎠

, (17)

that is diagonal in the rest frame is given by,

Tμν = (LzT
�Lz)

μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2T�00 + γ2β2T�33 0 0 γ2β(T�00 + T�33)

0 T�11 0 0

0 0 T�22 0

γ2β(T�00 + T�33) 0 0 γ2β2T�00 + γ2T�33

⎞
⎟⎟⎟⎟⎟⎟⎠

. (18)

In particular, the transformation of T�μν
EM , eq. (6), is,

Tμν
EM =

E�2

8π

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2(1 − β2) 0 0 γ2β(1 − 1)

0 1 0 0

0 0 1 0

γ2β(1 − 1) 0 0 −γ2(1 − β2)

⎞
⎟⎟⎟⎟⎟⎟⎠

=
E�2

8π

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

= T�μν
EM , (19)
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as found above.
Similarly, the transformation of the mechanical stress tensor T�μν

mech, eq. (8), is, with σ = 0,

Tμν
mech =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ2ρ�
mc2 + γ2β2 E�2

8π
0 0 γ2β

(
ρ�

mc2 + E�2

8π

)

0 0 0 0

0 0 0 0

γ2β
(
ρ�

mc2 + E�2

8π

)
0 0 γ2β2ρ�

mc2 + γ2 E�2

8π

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

and the transformation of the total stress tensor T�μν
total, eq. (9), is,

Tμν
total =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2ρ�
totalc

2 0 0 γ2βρ�
totalc

2

0 E�2

8π
0 0

0 0 E�2

8π
0

γ2βρ�
totalc

2 0 0 γ2β2ρ�
totalc

2

⎞
⎟⎟⎟⎟⎟⎟⎠

= Tμν
EM + Tμν

mech, (21)

with the total mass density ρ�
total given by eq. (10).

One noteworthy feature of eq (21) is the nonzero value of T33
total. We recall that the purely

spatial components of a stress-energy-momentum tensor have the dual interpretation as the
momentum-flux tensor. In the present case, the flux of momentum is in the z direction, with
magnitude equal to the momentum density times v, namely (γρ�

totalv) · v = γ2β2ρ�
totalc

2 =
T33

total.
Turning to the component T00

total, we note that the mass of the material between the
capacitor plates, when moving with velocity v, is larger than its rest mass by the factor γ.
However, a moving volume element is smaller by the factor 1/γ than when that element is
at rest. Hence, the mass density ρm is larger by a factor of γ2 for the moving capacitor than
when at rest,

ρm = γ2ρ�
m. (22)

Thus, the component T00
total transforms as expected for a mass density.

Furthermore, the four components,

(T00
total, T

01
total, T

02
total, T

03
total) (23)

of the total energy-momentum-stress tensor transform as an energy-momentum-density 4-
vector, although this is not the case for the sets of components,

(T00
EM, T01

EM, T02
EM, T03

EM) or (T00
mech, T

01
mech, T

02
mech, T

03
mech) (24)

separately. This illustrates a general result that within volumes that contain both electro-
magnetic fields and matter, the concepts of electromagnetic momentum density, T0i

EM/c =
E × B/4πc, and mechanical momentum density, T0i

mech/c, are not consistent with being
components of a energy-momentum 4-vector; only the total momentum density, T0i

total/c, is
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satisfactory in this respect. The great utility of the concept of “electromagnetic” momen-
tum in matter-free regions leads us to attach similar significance to it in systems containing
matter. However, this often results in difficulties in the interpretation of the “mechanical”
part of the momentum.

As noted in [5], T�0i
EM = 0, so there is no flow of electromagnetic energy along with

the moving capacitor when v ‖ E. However, the flow of mechanical energy density asso-
ciated with the moving capacitor is cT�0i

mech, and we see in eq.(20) that cT�03
mech has a term

γ2E�2v/8π = T�00
EMv, which is the value perhaps näıvely expected for cT�0i

EM. That is, the
flow of energy in the moving capacitor is “mechanical,” not “electromagnetic.” The elec-
tromagnetic field energy inside the moving capacitor is at rest, while the “bottom” plate
of the capacitor “sweeps up” this energy, converts it to mechanical energy that flows up to
the “top” plate inside the stressed dielectric, where it is converted back into electromagnetic
energy. This is an example of the relativity of steady energy flow [16, 17, 18].

For a capacitor moving with v ‖ E the electromagnetic-field momentum is zero,

PEM =

∫
pEM dVol =

∫
E × B

4πc
dVol = 0, (25)

in that T0i
EM = c pEM,i = 0, while the electromagnetic field energy is UEM = T00

EMV =
E�2V �/8πγ = U�

EM/γ, where V = V �/γ is the Lorentz-contracted volume of the moving
capacitor.6 The effective mass of this energy is MEM = E�2V/8πc2 = E�2V �/8πγc2 =
M�

EM/γ, and it moves with velocity v, so that,

MEMvcm,EM =
E�2V

8πc2
v. (26)

Thus, according to the definition (1) the electromagnetic field of the moving capacitor pos-
sesses “hidden” momentum,

Phidden,EM = PEM −MEMvcm,EM = −E�2V

8πc2
v. (27)

This momentum is “hidden” in the sense that the electromagnetic field has no momentum,
but its center of mass/energy is in motion.

The mechanical momentum density is given from eq. (20) as,

pmech = γ2

(
ρ�

m +
E�2

8πc2

)
v = ρtotalv. (28)

The mechanical momentum is the momentum density times the volume V ,

Pmech = pmechV = γ2V

(
ρ�

m +
E�2

8πc2

)
v. (29)

6(Dec. 8, 2020) Rohrlich [11] advocated an electromagnetic energy momentum 4-vector PRohrlich,μ =
γ U�

EM(1, v/c) = (UEM,Rorhlich, cPEM,Rorhlich), i.e., UEM,Rorhlich = γ U�
EM and PEM,Rorhlich = γ U�

EMv/c2.
This formalism makes little physical sense to the present author.

Note also that UEM,Rorhlich = γ2 UEM; Rohrlich’s eqs. (3.25) and (3.26) should have factors of γ2 not γ.
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The mechanical mass density is,

ρmech = T00
mech = γ2

(
ρ�

m + β2 E�2

8πc2

)
, (30)

and this moves with velocity v such that,

Mmechvcm,mech = ρmechV v = γ2V

(
ρ�

m + β2 E�2

8πc2

)
. (31)

According to definition (1) the matter of the moving capacitor possesses “hidden” momen-
tum,

Phidden,mech = Pmech − Mmechvcm,mech = γ2
(
1 − β2

) E�2V

8πc2
v =

E�2V

8πc2
v = −Phidden,EM. (32)

This result reflects that the energy and momentum of stress in a moving subsystem do
not transform like a 4-vector if that subsystem interacts with another subsystem (here, the
electromagnetic field).

The total “hidden” momentum, Phidden,mech + Phidden,EM, of the system is zero.7

2.2 The Capacitor Has Velocity v ⊥ E�

In a frame where the capacitor has constant velocity v = v x̂, the electric and magnetic fields
between its plates are given by the transformation,

E‖ = E�
‖ = 0, (33)

E⊥ = γ(E�
⊥ − v

c
× B�) = γE� ẑ, (34)

B‖ = B�
‖ = 0, (35)

B⊥ = γ(B�
⊥ +

v

c
× E�) = −γ

v

c
E� ŷ. (36)

Using eqs. (2)-(5) together with eqs. (33)-(36), the electromagnetic energy-momentum-stress
tensor of the moving capacitor is,

Tμν
EM =

E�2

8π

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2(1 + β2) 2γ2β 0 0

2γ2β γ2(1 + β2) 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (37)

7If we consider the system to consist of two subsystems, A = capacitor plates and charge thereon, B =
dielectric + electromagnetic fields, then subsystem B has the same properties as the entire system considered
above (where we neglected the mass/energy of the capacitor plates). Hence, subsystem B has zero “hidden”
momentum.
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We confirm this result using the Lorentz transformation Lx from the rest frame to a frame
in which the capacitor has velocity v x̂,

Lμν
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (38)

Then, the transform of a tensor (17) that is diagonal in the rest frame is given by,

Tμν = (LxT
�Lx)

μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2T�00 + γ2β2T�11 γ2β(T�00 + T�11) 0 0

γ2β(T�00 + T�11) γ2β2T�00 + γ2T�11 0 0

0 0 T�22 0

0 0 0 T�33

⎞
⎟⎟⎟⎟⎟⎟⎠

, (39)

In particular, the transformation of T�μν
EM , eq. (6), is,

Tμν
EM =

E�2

8π

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2(1 + β2) 2γ2β 0 0

2γ2β γ2(1 + β2) 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (40)

as found above.
Similarly, the transformation of the mechanical stress tensor T�μν

mech, eq. (8), is, with σ = 0,

Tμν
mech =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2ρ�
mc2 γ2βρ�

mc2 0 0

γ2βρ�
mc2 γ2β2ρ�

mc2 0 0

0 0 0 0

0 0 0 E�2

8π

⎞
⎟⎟⎟⎟⎟⎟⎠

, (41)

the transformation of the total stress tensor T�μν
total, eq. (9), is,

Tμν
total =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2ρ�
totalc

2 + γ2β2 E�2

8π
γ2βρ�

totalc
2 + +γ2β E�2

8π
0 0

γ2βρ�
totalc

2 + γ2β E�2

8π
γ2β2ρ�

totalc
2 + γ2 E�2

8π
0 0

0 0 E�2

8π
0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

= Tμν
EM + Tμν

mech, (42)
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with the total mass density ρ�
total again given by eq. (10), ρ�

total = ρ�
m + E�2

8πc2
.8

For a capacitor moving with v ⊥ E the electromagnetic-field momentum is found from
from eq. (40) to be,

PEM =
T01

EMV

c
x̂ =

2γ2E�2V

8πc2
v, (43)

and,

MEMvcm,EM =
T00

EMV

c2
v =

γ2(1 + β2)E�2V

8πc2
v. (44)

According to definition (1) the electromagnetic field of the moving capacitor possesses “hid-
den” momentum,

Phidden,EM = PEM − MEMvcm,EM =
E�2V

8πc2
v. (45)

The mechanical momentum is given from eq. (41) as,

Pmech =
T01

mechV

c
x̂ = γ2V ρ�

m v, (46)

and,

Mmechvcm,mech =
T00

mechV

c2
v = γ2V ρ�

m v. (47)

According to definition (1) the matter of the moving capacitor possesses no “hidden” mo-
mentum,

Phidden,mech = Pmech − Mmechvcm,mech = 0. (48)

The total “hidden” momentum of the system is nonzero,

Phidden,total = Phidden,EM + Phidden,mech = Phidden,EM =
E�2V

8πc2
v. (49)

As noted on p. 1, the total “hidden” momentum of an isolated system is zero, so the
present approximation of no fringe field of the capacitor leads to unphysical results for the
case the v ⊥ E�.9

8Element T01
total of eq. (42) shows that the flow of total energy between the capacitor plates is proportional

to the velocity v x̂. However, elements T0ν
total do not form an energy-momentum 4-vector, as is expected to

exist for an isolated system [11]. We infer that there exists (electromagnetic) energy and momentum in the
fringe field of the capacitor, such that inclusion of this in the stress tensor would permit the volume integrals
of the energy and momentum densities to form a 4-vector. Furthermore, the flow of energy in the fringe
field has a component in the −x̂ direction, opposite to the velocity of the capacitor, as discussed in [5]. Such
counterintuitive behavior of energy flow is also encountered in examples such as the belt drive considered by
Taylor and Wheeler [16, 17]; see also [18].

9If we had followed [8, 15] in supposing that the medium between the capacitor plates is a gas, then
T�11

mech = T�22
mech = E�2/8π rather than zero as assumed in this note. This change has no effect on the results

of sec. 2.1 above, but in sec. 2.2 it would alter eqs. (46)-(48) such that Phidden,mech = Phidden,EM, and the
total “hidden” momentum of the moving system would again be nonzero, but with a value twice that than
found in eq. (49). However, this conclusion ignores the stress-energy-momentum in the box that contains
the gas.
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2.3 Use of a Vector Potential (July 6, 2023)

We recall that for quasistatic systems, the electromagnetic field momentum can be computed
several ways [20],

PEM =

∫

A(C)

c
dVol =

∫
E × B

4πc
dVol =

∫
V (C)J

c2
dVol =

∫
J · E
c2

r dVol, (50)

where the potentials A(C) and V (C) are in the Coulomb gauge.
The electric scalar potential V and the vector potential A form a 4-vector Aμ = (V,A),

and the vector potential is zero in the rest frame of the capacitor. Hence, the (coulomb-gauge)
vector potential in a frame where the capacitor have velocity v is simply A(C) = γvV �(C)/c,
where V �(C) = ±E�d�/2 on the capacitor plates whose separation is d� in the rest frame,
and defining the potential to be zero on the midplane of the capacitor.

Is the present example “quasistatic”, such that the electromagnetic field momentum can
be computed via the first form of eq. (50)?

The plates of the capacitor have electric charge ±Q = ±E�Area�/4π in the approximation
of uniform electric field between the plates, and zero fringe field. Then, the electromagnetic
field momentum according to the first form of eq. (50) would be,

PEM =

∫

A(C)

c
dVol =

γv

c2

(
QE∗d

�

2
+ (−Q)E∗−d�

2

)
=

γvQE∗d�

c2

=
γvE∗2Area�d�

4πc2
=

γ2vE∗2V
4πc2

, (51)

for any direction of the velocity v, recalling that the volume of the moving capacitor is
V = V �/γ.

While eq. (51) agrees with eq. (43) for v ⊥ E, it disagrees with eq. (25) for v ‖ E where
PEM = 0 (according to eq. (25), which we consider to be the correct expression for the
electromagnetic momentum in general). Thus, we should not describe the moving capacitor
as a “quasistatic” system, for which all four forms of eq. (50) would be give the same the
electromagnetic momentum.
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