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1 Problem

Discuss the character of Čerenkov radiation emitted by a charge q that traverses a short
length L at velocity v > c/n in a medium of index of refraction n > 1, where c is the speed
of light in vacuum. Of course, v < c for a physical charge that also has mass.

In the idealized case of infinite L the radiation flows at a single angle [1],

cos θC =
c

nv
, sin θC =

√
1 − c2

n2v2
, (1)

and the flux of energy along a “ray” falls off only as 1/r from its origin on the particle’s
trajectory. Comment on the falloff of the flux of energy with distance when the path length
L is finite.

2 Solution

For a “shortcut” solution based on the Weizsäcker-Williams approximation, see sec. 5 of [2].
We imagine that the charge travels along the z-axis inside a vacuum pipe of small diam-

eter, and this pipe has a gap −L/2 < z < L/2. Outside the pipe (including the gap region)
the medium has index of refraction n > 1.

This case was considered by Tamm in 1939 [3], who noted that even if the index is 1 there
is a radiation effect associated with the particle’s exit from and re-entrance into the vacuum
pipe. This effect is now called transition radiation, which is not the topic of the present
note. In this solution, which follows Tamm, we will simply ignore the transition radiation.

In physical media, the index n is frequency dependent, and exceeds unity only over a
finite ranges of frequencies. This limits the total energy emitted per unit path length to a
finite amount, as is physically reasonable. Hence, it is both mathematically convenient and
physically preferable to consider a Fourier analysis of the present problem.

2.1 Potentials and Fields

We find the electromagnetic fields from the retarded potentials of Lorenz [4] (in Gaussian
units),

V (x, t) =
1

ε

∫
ρ(x′, t′ = t − nR/c)

R
d3x′, A(x, t) =

μ

c

∫
J(x′, t′ = t − nR/c)

R
d3x′, (2)

for a medium of (relative) permittivity ε, (relative) permeability μ, and index of refraction
n =

√
εμ, where R = |x − x′|. We consider time dependence at angular frequency ω of the
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form e−iωt, so temporal Fourier transforms have the form,

ρ(x, t) =

∫
ρω(x) e−iωt dω, ρω(x) =

1

2π

∫
ρ(x, t) eiωt dt, etc. (3)

The Fourier transforms of the retarded potentials (2) are,

Vω(x) =
1

ε

∫
ρω(x′) eikR

R
d3x′, Aω(x) =

μ

c

∫
Jω(x′) eikR

R
d3x′, (4)

where k = nω/c is the (frequency-dependent) wave number.
The charge and current density, ρ and J of the charge when it is in the gap can be written

as,

ρ = qδ(x)δ(y)δ(z − vt), J = ρv = ρv ẑ

(
−L

2
< z <

L

2
, − L

2v
< t <

L

2v

)
, (5)

and zero otherwise. Their Fourier transforms are,

ρω =
qδ(x)δ(y) eiωz/v

2πv
, Jω = ρωv ẑ

(
−L

2
< z <

L

2

)
, (6)

and zero otherwise.
We consider only a distant observer at (r � L, θ, φ) in a spherical coordinate system

whose polar axis is the z-axis. Then, we approximate the distance R in the denominators of
eqs. (4) by r, while in the numerator we approximate R ≈ r − z cos θ for the charge along
the z-axis in the gap. The retarded potentials are now approximated at large distances as,

Vω(x) ≈ q

2πεrv

∫ L/2

−L/2

eiωz′/v eik(r−z′ cos θ) dz′ =
qL eikr

2πεrv

sinu

u
, (7)

Aω ≈ εμv

c
Vω ẑ =

μqL eikr

2πcr

sinu

u
(cos θ r̂− sin θ θ̂), (8)

where,

u =
ωL

2v

(
1 − nv

c
cos θ

)
=

ωL

2v

(
1 − cos θ

cos θC

)
. (9)

The function sinu/u has a full width at half maximum of about 4.
For L large compared to a wavelength λ, we expect that significant radiation is detected

by the observer only along direction θC, where the Čerenkov angle is given in eq. (1). In the
case of a finite source length L, radiation will be observed only at angles θ close to θC . So,
we write δθ = θ − θC, and,

cos θ = cos(θC + δθ) ≈ cos θC(1 − tan θC δθ). (10)

Then,

u ≈ ωL tan θC

2v
δθ =

nωL sin θC

2c
δθ =

πL sin θC

λ
δθ. (11)
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The function sin u/u has a full width at half maximum of about 4, so the radiation has an
angular spread about the Čerenkov angle of ±δθ where,

δθ ≈ 2λ

πL sin θC
. (12)

The Fourier components of the electric and magnetic fields can now be calculated from
the potentials as,

Eω = −∇Vω +
iω

c
Aω, Bω = ∇ × Aω. (13)

The various terms in the fields fall of with distance as 1/r or faster, and the terms that fall
off as 1/r are,

Eω,θ(r, θ) =
iω

c
Aω,θ ≈ − iμqLω sin θC

πc2

eikr

r

sin u(ω, θ)

u(ω, θ)
, Bω,φ =

1

r

∂

∂r
(rAω,θ) ≈ nEω,θ.

(14)
These fields are symmetric in φ and large only for θ within ±δθ ≈ ±2λ/πL sin θC of the
Čerenkov angle θC .

Since the fields fall off with distance as 1/r, the energy flux falls off as 1/r2.
It is noteworthy that as the path length L grows large the angular spread of the radiation

in θ goes to zero, but the leading terms in the fields always fall off as 1/r. The mathematical
case of an infinite path length with fields that fall off as 1/

√
r is not a limit of physically

possible cases of large but finite L.1

2.2 Energy Radiated to “Infinity”

As usual for nonmonochromatic fields, a Fourier analysis of the Poynting vector cannot be
made as (c/4π)Eω × Hω. Rather, we note that the entire energy U radiated to “infinity”
can be calculated from the leading terms in the fields at large r according to,

U =

∫
dt

∫
dΩ r2Sr,leading(r, t) = 2πr2

∫
dt

∫
sin θ dθ

c

4πn
Eθ(r, t)Hφ(r, t) (15)

=
cr2

2

∫
dt

∫
sin θ dθ Re

(∫
Eω,θ e−iωt dω

)
Re

(∫
Bω′,θ

μ′ e−iω′t dω′
)

≈ q2L2

2π2c3

∫
sin θ dθ

∫
dω

μ ω sin θC sin u

u

∫
dω′ n′ω′ sin θ′C sinu′

u′∫
dt sin(kr − ωt) sin(k′r − ω′t) (16)

=
q2L2

2π2c3

∫
sin θ dθ

∫
dω

μ ω sin θC sin u

u

∫
dω′ n′ω′ sin θ′C sinu′

u′ πδ(ω − ω′)

=
q2L2

2πc3

∫
dω μnω2 sin2 θC

∫
sin θ dθ

sin2 u

u2

1A variation of Čerenkov radiation with a finite path length is a charged particle that moves in a circle
with uniform speed v > c/n. As discussed on p. 4 of [5], the fields here fall off as 1/r at large r, despite
claims to the contrary [6].
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≈ q2L

πc2

∫
dω μω sin2 θC

∫
du

sin2 u

u2

=
q2L

c2

∫
dω μω

(
1 − c2

n2v2

)
, (17)

where the final integral is evaluated only for those frequencies at which n(ω)c/v > 1. The
total energy U that is radiated to “infinity” is finite because the condition n(ω)c/v is satisfied
only for a finite range of frequencies.

The result can also be written as the energy radiated per unit path length and per unit
frequency interval,

dU

dω dL
≈ μq2ω

c2
sin2 θc(ω). (18)

3 v > c in Vacuum

A physical charge cannot travel with speed v greater than c. However, the current density
J need not be that of a single charge moving with velocity v, as considered in sec. 2. If the
current density is due to a collection of charges it can be arranged that while the speed of
every charge is less than c the charge distribution has features that move with a velocity
larger than c.2

Such a superluminal current density can exist in vacuum. Then, we can carry over the
analysis of sec. 2 by setting ε, μ and the index n to unity. We see immediately that for
a source current density that is confined to a finite spatial region the fields fall off as 1/r
at large distance, and the radiated energy density falls off as 1/r2. This is true for current
densities that follow a curved path, as well as those that follow a straight path.3

In vacuum, the condition that the source distribution has an effective velocity greater than
c in independent of frequency, so if all the analysis of sec. 2 applied here the total radiated
energy per unit path length would be infinite. However, the superluminal current density
must be constructed from a collection of charges whose distribution has some characteristic
length scale a, rather than from a single “point” charge as considered in sec. 2. Then,
pointlike Čerenkov radiation is observed only for frequencies up to ω ≈ c/a, and only a finite
energy is radiated per unit path length.

References
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