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1 Problem

“In outer space, two small balls of equal unknown masses m and charges ±q are initially held
at rest a distance d0 apart. Then, the balls are simultaneously launched with equal speeds
v0 in opposite directions that are perpendicular to the line connecting the balls. During the
subsequent motion of the balls, their minimum speed is vmin. Find the masses of the balls.”

This problem was posed in the Feb. 2012 issue of The Physics Teacher,
http://tpt.aapt.org/resource/1/phteah/v50/i2/p123_s1

2 Solution

This problem is not elementary if one includes relativistic effects, magnetism and radiation
by the accelerating charges. The solution given in this section ignores such effects, and also
ignores the gravitational interaction between the two masses (although Newtonian gravity
could be included with little effect on the following other than increasing the complexity of
the form of the potential energy).

The total energy E of the system, approximated as nonrelativistic kinetic energy plus
electrostatic potential energy, is constant,

E = mv2
0 −

q2

d0
= mv2 − q2

d
, (1)

where each sphere has speed v when their separation is d, and we ignore the energy of the
magnetic fields of the moving charges, as well as the energy radiated as a consequence of
their acceleration. Gaussian units are employed.

Of course, the center of mass/energy of this system is at rest, at a point we define to be
the origin.

Angular momentum is conserved in this problem, but it is complicated to calculate this
if we consider the effects of the magnetic fields of the moving charges on one another.

The total energy E can be positive, zero, or negative.
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2.1 E > 0

When the total energy is positive the spheres eventually move arbitrarily far apart, where
their speeds approach vmin. The “final” electrostatic energy is zero, so we obtain,

mv2
0 −

q2

d0
= mv2

min, (2)

and hence,

m =
q2

d0(v2
0 − v2

min)
(E ≥ 0). (3)

Angular momentum was not considered in the above analysis, but must be conserved.
Hence, the “final” motion of the spheres are along parallel lines, almost radial, offset by
distance d⊥ where,

v0d0 = vmind⊥. (4)

The trajectories of the particles are hyperbolae, with one focus at the origin and asymp-
totically straight lines with separation d⊥.

2.2 E = 0

If the total energy is zero the spheres can also move arbitrarily far apart, but now vmin = 0,
so m = q2/d0v

2
0.

1

The trajectories of the particles in this case are parabolas, with focus at the origin.
Asymptotically the trajectories are straight lines parallel to the original line of centers, with
infinite offset d⊥ and final velocity vmin = 0 such that d⊥vmin = d0v0.

2.3 E < 0

If the total energy is negative the spheres cannot move arbitrarily far apart. Rather, their
motion is bound, and the trajectories of the spheres are ellipses with a focus at the origin.
The initial positions of the spheres are the closest to the origin, where the speed in maximum.
The minimum speed occurs when the spheres are the farthest from the origin, and at that
point their velocities are perpendicular to the radius vectors from the origin. The maximal
separation, dmax, of the spheres is related by conservation of angular momentum to the initial
conditions,

v0d0 = vmindmax. (5)

Using this in the energy equation (1), we have,

mv2
0 −

q2

d0
= mv2

min −
q2vmin

v0d0
(6)

1Formally, eqs. (2)-(4) still apply.
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and hence,

m =
q2

d0v0(v0 + vmin)
(E < 0). (7)

In the limit that vmin → 0, M → q2/d0v
2
0 and dmax → ∞, as found for the case of E = 0.

3 Solution in the Darwin Approximation

To carry the solution to the next approximation, in which terms of order v2/c2 are retained,
where c is the speed of light in vacuum, we follow Darwin [1]. See also [2]. This approximation
includes effects of magnetism, and also of “relativistic mass”, but not of radiation.

The Lagrangian for a charge e of (rest) mass m that moves with velocity v in an external
electromagnetic field that is described by potentials φ and A can be written as (see, for
example, sec. 16 of [3]),

L = −mc2
√

1 − v2/c2 − qφ + q
v

c
· A. (8)

Darwin [1] worked in the Coulomb gauge, and kept terms only to order v2/c2. Then, the
scalar and vector potentials due to a charge q that has velocity v are (see sec. 65 of [3] or
sec. 12.6 of [4]),

φ =
q

R
, A =

q[v + (v · n̂)n̂]

2cR
, (9)

where n̂ is directed from the charge to the observer, whose (present) separation is R.
Combining equations (8) and (9) for a collections of charged particles, and keeping terms

only to order v2/c2, we arrive at the Darwin Lagrangian,

L =
∑

i

miv
2
i

2
+

∑
i

miv
4
i

8c2
−

∑
i>j

qiqj

Rij

+
∑
i>j

qiqj

2c2Rij

[vi · vj + (vi · n̂ij)(vj · n̂ij)] ,

where we ignore the constant sum of the rest energies of the particles.
The Lagrangian (3) does not depend explicitly on time, so the corresponding Hamiltonian,

H =
∑

i

pi · vi − L, (10)

is the conserved energy of the system, where,

pi =
∂L
∂vi

= mivi +
miv

2
i

2c2
vi +

∑
j �=i

qiqj

2c2Rij
[vj + n̂ij(vj · n̂ij)]

= mivi +
miv

2
i

2c2
vi +

∑
j �=i

qiAj(ri)

c
= mivi +

miv
2
i

2c2
vi +

qiAext,(ri)

c
(11)

is the canonical momentum of particle i, and Aext,i is the vector potential due to charges
other than qi. Hence, the Hamiltonian/energy is,

E =
∑

i

miv
2
i

2
+

∑
i

3miv
4
i

8c2
+

∑
i>j

qiqj

Rij
+

∑
i>j

qiqj

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (12)
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as first derived by Darwin [1].

In the present problem there are no external fields, the two particle velocities are equal
and opposite at all times, and the (conserved) total energy is,

E = mv2 +
3mv4

4c2
− q2

d
+

q2

c2d

[
v2 + (v1 · n̂12)

2
]

= mv2
0 +

3mv4
0

4c2
− q2

d0
+

q2v2
0

c2d0
. (13)

3.1 E ≥ 0

In this case the spheres travel arbitrarily far apart, such that

mv2
min +

3mv4
min

4c2
= mv2

0 +
3mv4

0

4c2
− 2q2

d0

+
q2v2

0

c2d0

, (14)

and hence,

m =
q2(1 − v2

0/c
2)

d0(v2
0 − v2

min)[1 + 3(v2
0 + v2

min)/4c
2]

≈ q2

d0(v2
0 − v2

min)

(
1 − 7v2

0 + 3v2
min

4c2

)
. (15)

3.2 E < 0

The force law for the bounded motion of the two spheres does not vary as 1/r2, so the
trajectories are not ellipses, but involve a precession that can be large or small depending
on the ratio q/m. The minimum velocity does not occur when the masses are along their
original line of centers, and is intricate to calculate. We leave this as an exercise for students
more energetic than the present author.

There must be some continuity between the solution for E = 0 (for which vmin = 0) and
that for E < 0 as E → 0 from below. Thus, we anticipate that for E < 0,

m =
q2

d0v0(v0 + vmin)

(
1 − 7v2

0 + av2
min

4c2

)
(E < 0), (16)

for some constant a of order unity.
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