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1 Problem

A well-known example of a tiny relativistic correction to an everyday phenomenon is the
small bulk charge density inside a conductor that carries a steady current.1 Discuss the bulk
charge distribution in a charged, conducting, rotating sphere of radius a, where the angular
velocity ω = ω ẑ obeys aω � c, and c is the speed of light in vacuum. You may suppose that
the bulk of the sphere remains rigid (and spherical), although the distribution of conduction
electrons is perturbed slightly.

2 Solution

In the first approximation, the total charge Q consists of a uniform surface charge density,

σ0 =
Q

4πa2
, (1)

while the interior of the sphere contains equal and opposite bulk charge densities ±ρ0. These
charge densities are at rest with respect to the rotating sphere (as an external energy source
would be required to maintain any motion of charges with respect to the bulk conductor).
There is no (macroscopic) electric field inside the sphere, but the rotating surface charge,
with surface current density,

K0 = aσ0ω sin θ φ̂ =
Qω sin θ

4πa
φ̂, (2)

in a spherical coordinate system (r, θ, φ) centered on the sphere. This current distribution
is the same as that of a sphere with uniform magnetization density M0 = M0 ẑ, where,2

M0 =
K0

c sin θ
=

Qω

4πac
, (3)

in Gaussian units, and so the interior of the sphere has a uniform magnetic field,3

B0 =
8πM0

3
=

2Qω

3ac
ẑ. (4)

As a result, the conduction electrons (with bulk charge density ρ−(r, θ) �= −ρ0 in the
second approximation) experience a Lorentz force density,

fB = ρ−v

c
× B0 = ρ−ω × r

c
× B0 =

ωρ−B0

c
r⊥ =

2ρ−Qω2

3ac2
r⊥ (5)

1See, for example, prob. 3 of http://kirkmcd.princeton.edu/examples/ph501set4.pdf
2See, for example, prob. 12(a) of http://kirkmcd.princeton.edu/examples/ph501set4.pdf
3See, for example, p. 98 of http://kirkmcd.princeton.edu/examples/ph501/ph501lecture8.pdf
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To maintain their circular motion, the conduction electrons of charge −e, mass m and mass
density ρm = −mρ−/e must be subject to a total inward force density,

ftotal = −ρmω2r⊥ =
mρ−ω2

e
r⊥ (6)

In general, the force densities (5) and (6) are not equal, so there must be an electric field E
present such that,

ftotal =
mρ−ω2

e
r⊥ = ρ−E + fB = ρ−E +

2ρ−Qω2

3ac2
r⊥. (7)

Hence, the electric field in the interior of the sphere must be,

E =

(
mc2

e
− 2Q

3a

)
ω2

c2
r⊥. (8)

If we write the total charge as,
Q = Ne, (9)

and introduce the classical electron radius r0 = e2/mc2 = 2.8 × 10−13 cm, then we require
that,

E = e

(
1

a2r0
− 2N

3a3

)
ω2a2

c2
r⊥ ≡ Ar⊥. (10)

For a sphere of radius a = 1 cm, the required electric field will be positive or negative
depending on whether N is smaller or larger than 1013.

The total charge density ρ = ρ0 + ρ− is related to the electric field according to,4

ρ =
∇ · E

4π
=

1

4πr⊥

∂(r⊥Er⊥)

∂r⊥
=

A

2π
. (11)

Hence, the charge density of conduction electrons is,

ρ− = −ρ0 + ρ = −ρ0 +
e

2π

(
1

a2r0

− 2N

3a3

)
ω2a2

c2
. (12)

The bulk charge density ρ0 is of order 1024 electrons/cm3, so for, say, N ≈ 1 Coulomb ≈ 1019

electrons, and ωa = 1 cm/s the difference between ρ− and −ρ0 is ≈ 10−26ρ0.
The total charge in the interior of the sphere is now,

Qin =
4πa3ρ

3
=

2a3A

3
=

2e

3

(
a

r0

− 2N

3

)
ω2a2

c2
. (13)

For the numerical example above, this is less than one electron.
This problem was suggested by Dragan Redzic.

4That a uniform bulk charge density ρ leads to an electric field in the r⊥ direction, rather than along r,
is possible as there is a small change to the surface charge density σ(θ) which breaks the spherical symmetry
of the problem.
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