A Conducting Checkerboard

Kirk T. McDonald *Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544* (October 4, 2001)

1 Problem

Some biological systems consist of two "phases" of nearly square fiber bundles of differing thermal and electrical conductivities. Consider a circular region of radius a near a corner of such a system as shown below.

Phase 1, with electrical conductivity σ_1 , occupies the "bowtie" region of angle $\pm \alpha$, while phase 2, with conductivity $\sigma_2 \ll \sigma_1$, occupies the remaining region.

Deduce the approximate form of lines of current density **J** when a background electric field is applied along the symmetry axis of phase 1. What is the effective conductivity σ of the system, defined by the relation $I = \sigma \Delta \phi$ between the total current I and the potential difference $\Delta\phi$ across the system?

It suffices to consider the case that the boundary arc $(r = a, |\theta| < \alpha)$ is held at electric potential $\phi = 1$, while the arc $(r = a, \pi - \alpha < |\theta| < \pi)$ is held at electric potential $\phi = -1$, and no current flows across the remainder of the boundary.

Hint: When $\sigma_2 \ll \sigma_1$, the electric potential is well described by the leading term of a series expansion.

2 Solution

The series expansion approach is unsuccessful in treating the full problem of a "checkerboard" array of two phases if those phases meet in sharp corners as shown above. However, an analytic form for the electric potential of a two-phase (and also a four-phase) checkerboard can be obtained using conformal mapping of certain elliptic functions [1]. If the regions of one phase are completely surrounded by the other phase, rather lengthy series expansions for the potential can be given [2]. The present problem is based on work by Grimvall [3] and Keller [4].

In the steady state, the electric field obeys $\nabla \times \mathbf{E} = 0$, so that **E** can be deduced from a scalar potential ϕ via $\mathbf{E} = -\nabla \phi$. The steady current density obeys $\nabla \cdot \mathbf{J} = 0$, and is related to the electric field by Ohm's law, $\mathbf{J} = \sigma \mathbf{E}$. Hence, within regions of uniform conductivity, $\nabla \cdot \mathbf{E} = 0$ and $\nabla^2 \phi = 0$. Thus, we seek solutions to Laplace's equations in the four regions of uniform conductivity, subject to the stated boundary conditions at the outer radius, as well as the matching conditions that ϕ , E_{\parallel} , and j_{\perp} are continuous at the boundaries between the regions.

We analyze this two-dimensional problem in a cylindrical coordinate system (r, θ) with origin at the corner between the phases and $\theta = 0$ along the radius vector that bisects the region whose potential is unity at $r = a$. The four regions of uniform conductivity are labeled I, II, III and IV as shown below.

Since $J_{\perp} = J_r = \sigma E_r = -\sigma \partial \phi / \partial r$ at the outer boundary, the boundary conditions at $r = a$ can be written as,

$$
\phi_I(r=a) = 1,\tag{1}
$$

$$
\frac{\partial \phi_{II}(r=a)}{\partial r} = \frac{\partial \phi_{IV}(r=a)}{\partial r} = 0, \tag{2}
$$

$$
\phi_{III}(r=a) = -1. \tag{3}
$$

Likewise, the condition that $j_{\perp} = j_{\theta} = \sigma E_{\theta} = -(\sigma/r)\partial \phi/\partial \theta$ is continuous at the boundaries between the regions can be written as,

$$
\sigma_1 \frac{\partial \phi_I(\theta = \alpha)}{\partial \theta} = \sigma_2 \frac{\partial \phi_{II}(\theta = \alpha)}{\partial \theta}, \qquad (4)
$$

$$
\sigma_1 \frac{\partial \phi_{III}(\theta = \pi - \alpha)}{\partial \theta} = \sigma_2 \frac{\partial \phi_{II}(\theta = \pi - \alpha)}{\partial \theta},
$$
\n(5)

From the symmetry of the problem we see that,

$$
\phi(-\theta) = \phi(\theta),\tag{6}
$$

$$
\phi(\pi - \theta) = -\phi(\theta),\tag{7}
$$

and in particular $\phi(r=0) = 0 = \phi(\theta = \pm \pi/2)$.

We recall that two-dimensional solutions to Laplace's equations in cylindrical coordinates involve sums of products of $r^{\pm k}$ and $e^{\pm ik\theta}$, where k is the separation constant that in general can take on a sequence of values. Since the potential is zero at the origin, the radial function is only r^k . The symmetry condition (6) suggests that the angular functions for region I be written as $\cos k\theta$, while the symmetry condition (7) suggests that we use $\sin k(\pi/2 - |\theta|)$ in regions II and IV and $\cos k(\pi - \theta)$ in region III. That is, we consider the series expansions,

$$
\phi_I = \sum A_k r^k \cos k\theta, \tag{8}
$$

$$
\phi_{II} = \phi_{IV} = \sum B_k r^k \sin k \left(\frac{\pi}{2} - |\theta| \right), \qquad (9)
$$

$$
\phi_{III} = -\sum A_k r^k \cos k(\pi - \theta). \tag{10}
$$

The potential must be continuous at the boundaries between the regions, which requires,

$$
A_k \cos k\alpha = B_k \sin k \left(\frac{\pi}{2} - \alpha\right). \tag{11}
$$

The normal component of the current density is also continuous across these boundaries, so eq. (4) tells us that,

$$
\sigma_1 A_k \sin k\alpha = \sigma_2 B_k \cos k \left(\frac{\pi}{2} - \alpha\right). \tag{12}
$$

On dividing eq. (12) by eq. (11) we find that,

$$
\tan k\alpha = \frac{\sigma_2}{\sigma_1} \cot k \left(\frac{\pi}{2} - \alpha\right) \,. \tag{13}
$$

There is an infinite set of solutions to this transcendental equation. When $\sigma_2/\sigma_1 \ll 1$ we expect that only the first term in the expansions (8)-(9) will be important, and in this case we expect that both k α and $k(\pi/2 - \alpha)$ are small. Then, eq. (13) can be approximated as,

$$
k\alpha \approx \frac{\sigma_2/\sigma_1}{k(\frac{\pi}{2} - \alpha)},\tag{14}
$$

and hence,

$$
k^2 \approx \frac{\sigma_2/\sigma_1}{\alpha(\frac{\pi}{2} - \alpha)} \ll 1.
$$
\n(15)

Equation (11) also tells us that for small $k\alpha$,

$$
A_k \approx B_k k \left(\frac{\pi}{2} - \alpha\right). \tag{16}
$$

Since we now approximate ϕ_I by the single term $A_k r^k \cos k\theta \approx A_k r^k$, the boundary condition (1) at $r = a$ implies that,

$$
A_k \approx \frac{1}{a^k},\tag{17}
$$

and eq. (16) then gives,

$$
B_k \approx \frac{1}{ka^k(\frac{\pi}{2} - \alpha)} \gg A_k. \tag{18}
$$

The boundary condition (2) now becomes,

$$
0 = kB_k a^{k-1} \sin k \left(\frac{\pi}{2} - \theta\right) \approx \frac{k\left(\frac{\pi}{2} - \theta\right)}{a\left(\frac{\pi}{2} - \alpha\right)},\tag{19}
$$

which is approximately satisfied for small k .

So we accept the first terms of eqs. $(8)-(10)$ as our solution, with k, A_k and B_k given by eqs. (15), (17) and (18).

In region I the electric field is given by,

$$
E_r = -\frac{\partial \phi_I}{\partial r} \approx -k \frac{r^{k-1}}{a^k} \cos k\theta \approx -k \frac{r^{k-1}}{a^k},\qquad(20)
$$

$$
E_{\theta} = -\frac{1}{r} \frac{\partial \phi_I}{\partial \theta} \approx k \frac{r^{k-1}}{a^k} \sin k\theta \approx k^2 \theta \frac{r^{k-1}}{a^k}.
$$
 (21)

Thus, in region I, $E_{\theta}/E_r \approx k\theta \ll 1$, so the electric field, and the current density, is nearly radial. In region II the electric field is given by,

$$
E_r = -\frac{\partial \phi_{II}}{\partial r} \approx -k \frac{r^{k-1}}{ka^k(\frac{\pi}{2} - \alpha)} \sin k \left(\frac{\pi}{2} - \theta\right) \approx -k \frac{r^{k-1}}{a^k} \frac{\frac{\pi}{2} - \theta}{\frac{\pi}{2} - \alpha},\tag{22}
$$

$$
E_{\theta} = -\frac{1}{r} \frac{\partial \phi_{II}}{\partial \theta} \approx k \frac{r^{k-1}}{k a^k (\frac{\pi}{2} - \alpha)} \cos k \left(\frac{\pi}{2} - \theta\right) \approx \frac{r^{k-1}}{a^k (\frac{\pi}{2} - \alpha)}.
$$
 (23)

Thus, in region II, $E_r/E_\theta \approx k(\pi/2 - \theta) \ll 1$, so the electric field, and the current density, is almost purely azimuthal.

The current density **J** follows the lines of the electric field **E**, and therefore behaves as sketched below:

The total current can be evaluated by integrating the current density at $r = a$ in region I,

$$
I = 2a \int_0^{\alpha} J_r d\theta = 2a\sigma_1 \int_0^{\alpha} E_r(r=a) d\theta \approx -2k\sigma_1 \int_0^{\alpha} d\theta = -2k\sigma_1 \alpha = -2\sqrt{\frac{\sigma_1 \sigma_2 \alpha}{\frac{\pi}{2} - \alpha}}.
$$
 (24)

In the present problem the total potential difference $\Delta\phi$ is -2 , so the effective conductivity is,

$$
\sigma = \frac{I}{\Delta \phi} = \sqrt{\frac{\sigma_1 \sigma_2 \alpha}{\frac{\pi}{2} - \alpha}}.
$$
\n(25)

For a square checkerboard, $\alpha = \pi/4$, and the effective conductivity is $\sigma = \sqrt{\sigma_1 \sigma_2}$. It turns out that this result is independent of the ratio σ_2/σ_1 , and holds not only for the corner region studied here but for the entire checkerboard array [5].

References

- [1] R.V. Craster and Yu.V. Obnosov, *Checkerboard composites with separated phases*, J. Math. Phys. **42**, 5379 (2001), http://kirkmcd.princeton.edu/examples/EM/craster_jmp_42_5379_01.pdf
- [2] Bao Ke-Da, Jörger Axell and Göran Grimvall, *Electrical conduction in checkerboard geometries*, Phys. Rev. B **41**, 4330 (1990), http://kirkmcd.princeton.edu/examples/EM/ke-da_prb_41_4330_90.pdf
- [3] M. S¨oderberg and G. Grimvall, *Current distribution for a two-phase material with chequer-board geometry*, J. Phys. C: Solid State Phys. **16**, 1085 (1983), http://kirkmcd.princeton.edu/examples/EM/soderberg_jpc_16_1085_83.pdf
- [4] Joseph B. Keller, *Effective conductivity of periodic composites composed of two very unequal conductors*, J. Math. Phys. **28**, 2516 (1987), http://kirkmcd.princeton.edu/examples/EM/keller_jmp_28_2516_87.pdf
- [5] Joseph B. Keller, *A Theorem on the Conductivity of a Composite Medium*, J. Math. Phys. **5**, 548 (1964), http://kirkmcd.princeton.edu/examples/EM/keller_jmp_5_548_64.pdf