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1 Problem
If a chimney is undermined on one side, so that it falls, rotating
about its base, it usually snaps before hitting the ground. We
can estimate the most likely position of the break by an exten-
sion of the principles of statics to a dynamic situation. This is
the spirit of D’Alembert.

You might wish to convince yourself that the above picture
shows the behavior after the break by performing a home ex-
periment. A ball rests on the one end of a stick held initially
at some angle to the horizontal, with the other end of the stick
on the floor. Let the system loose. The stick will appear to fall
faster that the ball. A cup placed on the stick can catch the
ball after the stick hits the floor. Hence, the top end of the stick
falls with acceleration greater than 1 g, and if the stick is weak,
it will snap in the sense shown in the first figure.

Consider the lower portion of the chimney below a distance x
from its base. The internal forces acting the lower portion across
a slice of the chimney at x can be combined into a net force F
applied at the center of the slice, and a net torque τ acting about
the center of the slice — a principle of statics. “Clearly” τ is
perpendicular to the vertical plane of the falling chimney. The
torque τ is due to pairs ±F′ of forces along the slice, such that
this torque is the same when computed about any point along
the centerline of the chimney between 0 and x. With respect to
points on the centerline of the portion of the chimney from x to
l, the force and torque on the slice are −F and −τ .

The chimney might break at x for any of 3 reasons:

1. The tension F‖ along the chimney is too great for the mortar between the bricks to
sustain. However, F‖ is compressive in the case of the falling chimney, and cannot lead
to a break.

2. The shear F⊥ across the slice is too great.

3. The torque τ is too great and the chimney bends and snaps.

Show that for an unbroken, falling chimney (of mass m, length l, with uniform, linear
mass density m/l, and radius small compared to l) at angle θ to the vertical,

τ (x) =
mgx(l − x)2 sin θ

4l2
, and F⊥ =

mgx(l − x)(l − 3x) sin θ

4l2
, (1)
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such that the chimney most likely breaks at x = l/3 if torque matters, but at x = 2l/3 if
shear matters. We take τ to be positive when out of the page.

Empirically, most chimneys break near x = 1/3, suggesting that they break due to the
torque effect.

Hint: Consider torque analyses of the entire chimney, and of the two portions described
above.

https://www.youtube.com/watch?v=jI0ryk39H4w

2 Solution

The literature on the falling chimney includes [1]-[10].
The torque equation for the entire (unbroken) chimney about its base is,

ml2

3
θ̈ = mg

l

2
sin θ, θ̈ =

3g sin θ

2l
, (2)

noting that F and τ are zero at the top of the chimney, and supposing the radius of the
chimney is small compared to its length l

We next consider the torque equation for lower portion of the chimney from 0 to x, again
taking the point of reference as the base of the chimney,

m
x

l

x2

3
θ̈ = m

x

l
g
x

2
sin θ + xF⊥ − τ , τ = xF⊥ +

mgx2(l − x) sin θ

2l2
, (3)

using eq. (2) to obtain the second form of eq. (3).
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We also consider the torque equation for the upper portion of the chimney from x to l
(before it breaks). All points on this segment are accelerating, so it is perhaps best to use
its center of mass as the reference point. Noting that F and τ at x on the lower end of the
upper segment are equal and opposite to those on the upper end of the lower segment, we
have,

m
l − x

l

(l − x)2

12
θ̈ =

l − x

2
F⊥ + τ ,

mg(l − x)3 sin θ

8l2
= F⊥

l − x

2
+ τ , (4)

recalling eq. (2). Using eq. (3) in (4) we obtain,

l + x

2
F⊥ =

mg(l − x)3 sin θ

8l2
− mgx2(l − x) sin θ

4l2

mg(l − x) sin θ

8l2
[(l − x)2 − 3x2] =

mg(l + x)(l − x)(l − 3x) sin θ

8l
, (5)

F⊥(x) =
mg(l − x)(l − 3x) sin θ

4l2
. (6)

Then, using eq. (3),

τ (x) =
mgx(l − x)(l − 3x) sin θ

4l2
+

mgx2(l − x) sin θ

2l2
=

mgx(l − x)2 sin θ

4l2
. (7)

F⊥(x) is maximum at x = 2l/3, while τ (x) is maximum at x = l/3.

A Appendix: Torque Analyses about Other Points

The torque analysis for the upper portion of the chimney could also be carried out using the
base of the chimney, or point x, or the upper end of the chimney (amongs other points).

A.1 Using the Base of the Chimney as the Reference Point

The moment of inertia of the upper portion of the chimney about its (fixed) base (point B)
is

IB =

∫ l

x

m

l
x′2 dx′ =

m

3l
(l3 − x3) =

m(l − x)(l2 + lx + x2)

3l
. (8)

Recalling that the force and torque acting at point x on the upper portion of the chimney
are −F and −τ , the torque equation for the upper portion is

IB θ̈ = −xF⊥ + τ +
m(l − x)

l
g

(
x +

l − x

2

)
sin θ. (9)

With eqs. (2) and (8) this becomes

τ = xF⊥ +
mg(l − x)(l2 + lx + x2) sin θ

2l2
− mg(l − x)(l + x) sin θ

2l
= xF⊥ +

mgx2(l − x) sin θ

2l2
.(10)

That is, torque analyses of both the lower and upper portions of the chimney using the base
of the chimney as the reference point give the same result for the magnitude τ of the torque
at point x.
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A.2 Using Point x as the Reference Point

The moment of inertia of the upper portion of the chimney about point x is

Ix = m
l − x

l

(l − x)2

3
=

m(l − x)3

3l
. (11)

Point x has acceleration ax = −xθ̇
2
x̂ + xθ̈ θ̂, so an observer at point x considers there to be

a“fictitious” force −mi ax acting on each mass mi in the upper portion of the chimney. See,
for example, eq. (39.7) of [12] and pp. 168-172 of [13]. Since the “fictitious” force −miax that
acts on mass mi does not depend on the position ri of that mass, the sum of the associated
”fictitious” torques about point x on an object of total mass m is simply

∑
ri × (−miax) = rcm,upper × (−mupperax), (12)

with magnitude [(l − x)/2][m(l − x)/l]x θ̈.
Recalling that the torque acting at point x on the upper portion of the chimney is −τ

(and that τ is positive when out of the page), the torque equation for the upper portion is

Ix θ̈ = τ + |rcm,upper × mupperg| − |rcm,upper × (−mupperax)|
= τ +

l − x

2

m(l − x)

l
g sin θ − l − x

2

m(l − x)

l
xθ̈ (13)

With eqs. (2), (3) and (11) this becomes

xF⊥ = −mgx2(l − x) sin θ

2l2
+

mg(l − x)3 sin θ

2l2
− mg(l − x)2 sin θ

2l
+

3mgx(l − x)2 sin θ

4l2

=
mg(l − x) sin θ

4l2
[−2x2 + 2(l − x)2 − 2l(l − x) + 3x(l − x)

]
=

mgx(l − x)(l − 3x) sin θ

4l2
,(14)

which agrees with eq. (6) for F⊥(x). Then, eq. (7) for τ(x) follows as before.

A.2.1 Use of an Accelerated and Rotating Frame

We can suppose that the (accelerated) point x is associated with a rotating coordinate system
(with origin at x) with an arbitrary angular velocity Ω(t) with respect to the lab frame, which
requires consideration of the additional “fictitious” forces miri×Ω̇+2mivi×Ω+miΩ×(r×Ω)
that would act on mass mi at ri in the accelerated, rotating frame of point x, with velocity
vi in this frame). See, for example, eq. (39.7) of [12] and pp. 168-172 of [13].

When we only consider these “fictitious” forces, and sum over masses mi in some object,
the subscript i can be replaced by the subscript cm (for center of mass of the object).
However, if we consider “fictitious” torques associated with these “fictitious” forces, then we
must evaluate the sums over masses mi. In general, it is expedient to avoid this additional
effort by not using a rotating frame.

Nonetheless, we now suppose that the angular velocity Ω of the accelerated, rotating
frame (with origin at point x) is θ̇, such that this frame is the body frame of the chimney,
in which it is at rest.
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The total torque about point x on the upper portion of the chimney is zero in this frame,
which is the sum of the torque −τ from the lower portion of the chimney, the torque due
to gravity, and the “fictitious” torques due to the “fictitious” forces −mi ax and miri × Ω̇
that act masses mi in the upper portion.1 The latter “fictitious” torque (about point x) is
negative, with magnitude given by∣∣∣∑ ri × (miri × Ω̇)

∣∣∣ =

∫ l−x

0

m dr

l
r2 θ̈ =

m(l − x)3

3
θ̈ = Ix θ̈. (15)

Then, the torque equation in the accelerated, rotating frame about point x is, recalling
eq. (12),

0 = τ + |rcm,upper ×mupperg| − |rcm,upper × (−mupperax)| −
∣∣∣∑ ri × (miri × Ω̇)

∣∣∣
= τ +

l − x

2

m(l − x)

l
g sin θ − l − x

2

m(l − x)

l
xθ̈ − Ix θ̈, (16)

which is the same as eq. (13), but more laborious to deduce using the rotating frame.

We succeeded in using accelerated, rotating axes in the torque analysis for the special
case that the axes are the body axes, considering the “fictitious” torques asscociated with
the four types of “fictitious” forces in such frames of reference. However, it seems that for
any other rotating axes there must be additional “fictitious” torques, such that the torque
analysis reduces, in effect, to use of nonrotating axes.

This reinforces the well known advice not to use rotating axes in torque analyses.

A.3 Using the Top of the Chimney at the Reference Point

The moment of inertia of the upper portion of the chimney its top (point T ) is the same as
that about point x.

IT = Ix =
m(l − x)3

3l
. (17)

Point T has acceleration aT = −lθ̇
2
x̂ + lθ̈ θ̂, so an observer at point T considers there to

be a ”fictitious” force −mupper aT acting on the center of the upper portion of the chimney.
Recalling that the force torque acting at point x on the upper portion of the chimney are
−F and −τ (and that τ is positive when out of the page), the torque equation for the upper
portion is

IT θ̈ = (l − x)F⊥ + τ − m(l − x)

l
g
l − x

2
sin θ +

m(l − x)

l
lθ̈

l − x

2
(18)

With eqs. (2), (3) and (17) this becomes

lF⊥ = −mgx2(l − x) sin θ

2l2
+

mg(l − x)3 sin θ

2l2
+

mg(l − x)2 sin θ

2l
− 3mgl(l − x)2 sin θ

4l2

=
mg(l − x) sin θ

4l2
[−2x2 + 2(l − x)2 + 2l(l − x) − 3l(l − x)

]
=

mgl(l − x)(l − 3x) sin θ

4l2
,(19)

which agrees with eq. (6) for F⊥(x).

1The Coriolis force is zero in this frame, and the centrifugal force is along the chimney, producing no
centrifugal torque.
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