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1 Problem

Calculate the electromagnetic fields, and the surface charge densities, of a coaxial cable of
length L, whose axis is the z-axis, with inner conductor of radius a, outer conductor that
extends from radius b to c, when a battery of voltage difference V0 is connected to one end
and a load resistor R0 is connected to the other (at larger z). The current may be taken as
flowing only in the +z direction inside the conductors and uniformly distributed over them.
The conductors have resistivity �, and the battery has negligible internal resistance. Both
the battery and the load resistor have the form of annuli.

This problem is based on sec. 17 of [1], sec. 10.4b of [2], prob. 7.57, ex. 8.3 and ex. 12.12
of [3].1 The earliest discussion of it may be in sec. 29 of [4].

1The fields and Poynting vector found in sec. 2.1 below were discussed qualitatively by Heaviside on
p. 212 of [5]; and on pp. 254-55 of the textbook [7], and quantitatively in [8]. See also [9].
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2 Solution

2.1 The Outer Conductor Has Zero Resistivity

It is simpler to consider first the case that the outer conductor has zero resistivity, and so is
everywhere at electric scalar potential V = 0, as in the figure below.2

The resistance R of the inner conductor is,

R =
�L

πa2
, (1)

so the total resistance of the cable plus (annular) load resistor is R0 + R. The DC current I
in the system is then,

I =
V0

R0 + R
. (2)

The current, which returns along the outer conductor, causes a magnetic field B that is
nonzero only inside the cable. This field is readily calculated via Ampère’s law to be (in
Gaussian units, and in a cylindrical coordinate system (r, φ, z) with the coaxial cable centered
on the z axis),3

B(z inside cable) =
2I

c
φ̂

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r
a2 (r < a),

1
r

(a < r < b),

0 (r > b).

(3)

Inside the inner conductor the electric field is E(r < a, z inside cable) = IR ẑ/L, as needed to
drive the current I against the resistance R.4 Since the tangential component of the electric
field is continuous across a boundary, there must be some electric field in the region r > a

2As usual in static examples, we work in the Coulomb gauge, which is the same as the Lorenz gauge in
such cases. For high frequencies, we advocate use of the Lorenz gauge in “circuit” problems [10].

3If R = 0 the current flows on the surface of the inner conductor and B = 0 for r < a.
4If we ignore the resistance R of the inner conductor, an even simpler analysis can be made. The battery

can be taken to lie in the plane z = 0 and the resistor in the plane z = L. For the outer conductor at zero
potential, the inner conductor (r ≤ a, 0 ≤ z ≤ L) has V0 = IR0 = Vbattery = Vresistor, and the electric field
is nonzero only inside the cable, (a < r < b, 0 ≤ z ≤ L), where it has only the (positive) radial component
Er = V0/r ln(b/a) = −V0/r ln(a/b). The potential in this region is V = V0 ln(r/b)/ ln(a/b). The inner
conductor has charge Q = V0/2 ln(b/a) per unit length on its surface.

Much more extensive discussion of this case is given in [11].
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as well. Indeed, a charge distribution Q(z) is needed on the surface of the inner conductor
to shape the interior electric field to be purely longitudinal.

An analysis of the electric field can be based on the convention that the electric potential
V (r, z) is equal to zero on the outer conductor, and is also zero on the plane z = 0 (which
is not necessarily inside the wire of length L). That is, we suppose the cable extends from
z = −L(1+R0/R) (the position of the battery) to z = −LR0/R (the position of the resistor),
so that the electric potential for r ≤ a can be written as,

V (r ≤ a, z inside cable) = −IRz

L
. (4)

Thus, the potential of the inner conductor at the position of the load resistor is IR0, and
the potential at the connection of the battery to the inner conductor is I(R0 + R), i.e., the
battery voltage (2).

The capacitance C per unit length between the inner and outer conductors of the coaxial
cable is well known to be,

C =
1

2 ln(b/a)
. (5)

The charge Q(z) per unit length on the inner conductor (with charge -Q(z) per unit length
on the outer conductor) is therefore,

Q(z) = CV (r = a, z) = − IRz

2L ln(b/a)
=

IRz

2L ln(a/b)
, (6)

assuming that L � b so that Q(z) is essentially constant over length Δz � b.5 Further, the
potential in the region a < r < b is essentially that for a long wire of charge density Q(z)
per unit length, matched to the condition that V (r = b) = 0, namely,

V (a < r < b, z) = −2Q(z) ln(r/b) = −IRz ln(r/b)

L ln(a/b)
, (7)

which also matches eq. (4) at r = a. The potential (7) can also be obtained by a separation-
of-variables solution to Laplace’s equation [1, 8]; see also sec. 2.2 below.

The electric field E is obtained by taking the gradient of eq. (7), and we find,

E =
IR

L

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẑ (r < a),

ln(r/b)
ln(a/b)

ẑ + z
r ln(a/b)

r̂ (a < r < b),

0 (r > b).

(8)

5A circuit in the form of a square of edge length L, with battery of potential difference V on one edge
and load resistor R0 on the opposite edge, could be approximated by a coaxial cable of outer radius b = L.
In this case the charge per unit length (6) implies that a wire segment of length L would have surface charge
density Q/2πa ≈ −IRz/4πaL ln(L/a) → −ε0IRz/aL ln(L/a), where R is the electrical resistance of that
segment, and the latter form holds in SI units. This result was first deduced in 1852 by Weber, Arts. 28-36
of Chap. X, sec. V in [12]. See also sec. 6.2 and Appendix A of [13].
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The electromagnetic momentum density pEM is,

pEM =
S

c2
=

E ×B

4πc
=

I2R

2πc2L

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− r
a2 r̂ (r < a),

− ln(r/b)
r ln(a/b)

r̂ + z
r2 ln(a/b)

ẑ (a < r < b),

0 (r > b).

(9)

The Poynting vector S quantifies the flow of energy from the battery in the region (a <
r < b, z = −L − R0/R) to the inner conductor and to the load resistor, where the energy is
dissipated in Joule heating.

The figure below (from [1]) shows lines of electric field and of Poynting flux in a coaxial
cable that has no terminating resistor, but rather is symmetric about the origin and with
power sources at both ends. The example considered here corresponds to, say, the left third
of the figure, plus a terminating resistive plate; the power source is at the left of the figure.

The total electromagnetic momentum PEM in the cable is,

PEM =

∫
pEM dVol =

I2R ẑ

2πc2L ln(a/b)

∫ b

a

2πr dr

∫ −LR0/R

−L(1+R0/R)

dz
z

r2
=

I2L(R0 + R/2)

c2
ẑ. (10)

2.2 The Outer Conductor Has Resistivity �

When the outer conductor has resistivity �, its resistance R′ is,

R′ =
�L

π(c2 − b2)
, (11)

and the DC current I in the circuit is,

I =
V0

R0 + R + R′ . (12)
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The magnetic field, which is nonzero only inside the cable to a good approximation, is now,

B(r, 0 < z < L) =
2I

c
φ̂

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r
a2 (r < a),

1
r

(a < r < b),

1
r

(
1 − r2−b2

c2−b2

)
(b < r < c),

0 (r > c),

(13)

where we now suppose that the battery is at z = 0 and the load resistor R0 is at z = L.
We also suppose that the flat surfaces of the coaxial cable at z = 0 and L with r < a and

b < r < c are good conductors, so inside the inner conductor the electric field is again,

E(r < a, 0 < z < L) =
IR ẑ

L
, (14)

as needed to drive the current I against the resistance R. Similarly, we expect that the
electric field in the outer conductor is E(b < r < c, 0 < z < L) = −IR′ ẑ/L.

For the electric field E = −∇V , we note that the potential V of the center conductor
is V0 at its left end, and V0 − IR at is right end, while the potential in the outer conductor
is zero at its left end, and IR′ = V0 − I(R + R0) at its right end. The potential inside
these conductor should only be a function of z, such that the electric field inside them is
longitudinal and uniform, i.e.,

V (r, 0 < z < L) =

⎧⎨
⎩

V0 − IRz
L

(r < a),

IR′z
L

(b < r < c).
(15)

In the region a < r < b, 0 < z < L, taken to be vacuum,6 the axially symmetric potential
V (r, z) obeys Laplace’s equation, ∇2V = 0, in cylindrical coordinates (r, φ, z),

1

r

∂

∂r

(
r
∂V

∂r

)
+

∂2V

∂z2
= 0. (16)

As usual, we seek solutions that are sums of terms of the separated form V = F (r)G(z), for
which eq. (16) implies that,

1

rF

d

dr

(
r
dF

dr

)
+

1

G

d2G

dz2
= 0, (17)

and that,

1

rF

d

dr

(
r
dF

dr

)
= k,

1

G

d2G

dz2
= −k, (18)

where k is a separation constant.

6If this region were filled with a material of (relative) dielectric constant ε, the potential and electric field
would be unchanged, but the “free” surface charge density on the cylinders r = a, b would be larger than
that found in eqs. (34)-(35) by the factor ε.
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The potential found in sec. 2.1 corresponds to k = 0, with F = A+B ln r and G = C+Dz,
i.e.,

V (a < r < b, 0 < z < L) = (A + B ln r)(C + Dz), (19)

with B = −IR/L ln(a/b), A = −B ln b, C = 0 and D = 1. Here, we also consider that
k = 0. Then, the potential (19) at the left end of the inner surface of the outer conductor is,

V (b, 0) = 0 = (A + B ln b)C. (20)

We cannot set C = 0 as then V (a, 0) would also be zero rather than V . Hence, we must
have (if k = 0) that,

A = −B ln b. (21)

However, this would imply that the potential is zero along the inner surface, r = b of the
outer conductor. While this was the case in sec. 2.1, it is not so here.

Instead, we note that a nonzero constant K could be added to the potential (19) with
no change in the electric field,

V (a < r < b, 0 < z < L) = (A + B ln r)(C + Dz) + K. (22)

Then, the potential at the left end of the inner surface of the outer conductor is,

V (b, 0) = 0 = (A + B ln b)C + K, AC = −BC ln b − K. (23)

Given that the potential (22) at the left end of the center conductor is V0, we have that,

V (a, 0) = V0 = (A + B ln a)C + K. (24)

Subtracting eq. (24) from (23), we have that,

BC ln
b

a
= −V0. (25)

The potential at the right end of the center conductor is V0 − IR, so,

V (a, L) = V0 − IR = (A + B ln a)(C + DL) + K = V0 + (A + B ln a)DL, (26)

and,

− IR = (A + B ln a)DL =
(V0 −K)DL

C
. (27)

Similarly, the potential at the right end of the inner surface of the outer conductor is IR′,
so,

V (b, L) = IR′ = (A + B ln b)(C + DL) + K = (A + B ln b)DL = −DKL

C
. (28)

6



recalling eq. (23). Combining eqs. (27)-(28), we have,

− IR =
V0DL

C
+ IR′,

DL

C
= − R + R′

R0 + R + R′ . (29)

From eq. (28),

K = − C

DL
IR′ =

R0 + R + R′

R + R′
V0R

′

R0 + R + R′ = V0
R′

R + R′ , (30)

such that K is nonzero if the outer conductor has nonzero resistance R′.
We now have relations for A, B, D and K in terms of C and constant parameters of the

problem. Thus, we could, say, take C = 1,7 in which case,

A = V0
ln b

ln b/a
− V0

R′

R + R′ B = − V0

ln b/a
, D = − 1

L

R + R′

R0 + R + R′ , (31)

and the potential V (a < r < b, 0 < z < L) in the gap of the coaxial cable is,

V = V0

(
ln b/r

ln b/a
− R′

R + R′

) (
1 − z

L

R + R′

R0 + R + R′

)
+ V0

R′

R + R′ . (32)

The main point is that a solution exists, which, of course, differs somewhat from that of
sec. 2.1 where the resistance of the outer conductor is zero.

The electric field E(0 < r < c, 0 < z < L) in the coaxial cable is,

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IR
L

ẑ = V0R
(R0+R+R′)L ẑ (r < a),

V0

r ln b/a

(
1 − z

L
R+R′

R0+R+R′

)
r̂ + V0

(
ln b/r
ln b/a

− R′
R+R′

)
R+R′

(R0+R+R′)L ẑ (a < r < b),

− IR′
L

ẑ = − V0R′
(R0+R+R′)L ẑ (b < r < c).

(33)

As expected, Ez is continuous across the surfaces r = a and b.
The potential (15) and (32) is only for the interior of the coaxial cable (plus battery

and load resistor). However, the potential is now known everywhere on the surface of this
system, so a solution exists (to Laplace’s equation) for the exterior region, which could be
found by a finite-element analysis if desired. Of course, one also must specify the potential
at “infinity”, which can reasonably taken to be zero.

Charge densities σ exist on the surfaces r = a, b and c for 0 < z < L, as well as on the
surfaces (0 < r < c, z = 0, L), the first two of which can be deduced from eq. (33),8

σ(a, z) = 4πEr(a
+, z) = − 4πV0

a ln b/a

(
1 − z

L

R + R′

R0 + R + R′

)
, (34)

σ(b, z) = −4πEr(b
−, z) =

4πV0

b ln b/a

(
1 − z

L

R + R′

R0 + R + R′

)
. (35)

7That is, instead of expressing the potential in terms of four constants A, B C and D as in eq. (19), we
use the form (22) with four constants A, B, D and K determined from the known potential at four points,
while defining that C = 1.

8The charge per unit length on the outer surface of the inner conductor is Q(r = a, z) = 2πa σ(a, z),
which is equal and opposite to the charge per unit length on the inner surface of the outer conductor,
Q(r = b, z) = 2πb σ(b, z).
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The other surface charge densities are not determined by the above (interior) solution, but
could be computed once the exterior electric potential and field were obtained.9

The Poynting vector S(0 < r < c, 0 < z < L) = (c/4π)E× B in the coaxial cable is,

S =
I

2π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− IRr
a2L

r̂ (r < a),

V0

r2 ln b/a

(
1 − z

L
R+R′

R0+R+R′

)
ẑ − V0

r

(
ln b/r
ln b/a

− R′
R+R′

)
R+R′

(R0+R+R′)L r̂ (a < r < b),

IR′
rL

(
1 − r2−b2

c2−b2

)
r̂ (b < r < c).

(36)

The power entering resistor R across surface (r = a, 0 < z < L) is I2R, as expected.
Similarly, the power entering resistor R′ across surface (r = b, 0 < z < L) is I2R′, and that
entering resistor R0 across surface (a < r < b, z = L) is,

PR0 =

∫ b

a

2πr dr Sz(r, L) =

∫ b

a

2πr dr
I

2π

V0

r2 ln b/a

R0

R0 + R + R′ = I2R0. (37)

Finally, the power delivered by the battery, across surface (a < r < b, z = 0), is,

Pbatt =

∫ b

a

2πr dr Sz(r, 0) =

∫ b

a

2πr dr
I

2π

V0

r2 ln b/a
= IV0 = I2(R0 + R + R′). (38)

2.3 Comment

It was recently claimed in [14] that no consistent solution exists for this problem, which sup-
posedly demonstrated that Ohm’s law is not consistent with Maxwell’s equations. Whereas,
this note illustrates that Ohm and Maxwell are consistent.
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