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1 Problem

A possibly surprising feature of electrodynamics in a frame that rotates with angular velocity
ω with respect to an inertial (laboratory) frame [1] is that a bulk magnetization M′ in the
rotating frame is associated with a bound charge density,

ρ′
bound,M = −2ω · M′

c
+

v

c
· ∇′ ×M′, (1)

in Gaussian units, where c is the speed of light, v = ω × x′ is the velocity of the point of
observation x′ with respect to the lab frame, and a ′ indicates a quantity measured in the
rotating frame.

As a model of a neutral, nonconducting magnetized medium (with electrical permittivity
ε = 1), consider a pair of counter-rotating disks of radii a with common axes of rotation,
and with fixed charges ±Q uniformly distributed around their circumferences, which charges
rotate with tangential velocities ±u. The charges lie within tori of minor area A, so that the
charge densities of the two disks (when at rest in an inertial frame) are ±ρ0 = ±Q/2πaA.

Deduce the total charge density ρ′ = ρ′+ + ρ′− in the rotating frame, and relate this to
the magnetization M′ associated with a uniform bulk distribution of pairs of such counter-
rotating disks.

2 Solution

2.1 The Centers of the Rotating Disks are at Rest in an Inertial
Frame

We first consider the case that the centers of the disks are at rest in an inertial frame.
Quantities observed in this frame will be denoted with a superscript �.

We can deduce the charge and current densities in the inertial rest frame of the centers of
the disks with the help of comoving inertial frames chosen so that the points of observation
on the circumferences of the rotating disks are instantaneously at rest in the comoving frame.

In the comoving rest frame, the local charge density on the two disks is ±ρ0, and the
local current density is zero.

In the rest frame of the centers of the disks, charges ±q have velocities ±u, so the charge
and current densities follow from a Lorentz transformation as,

ρ�± = ±γuρ0 ≈ ±ρ0 J�± = γu(±ρ0)(±u) = γuρ0u ≈ ρ0u, (2)
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where γu = 1/
√

1 − u2/c2 ≈ 1 and the approximations hold for u � c as is assumed in this
problem.1

The total charge and current density in the inertial rest frame of the centers of the disks
is,

ρ�
total = ρ�+ + ρ�− = 0, J�

total = J�+ + J�− = 2γuρ0u ≈ 2ρ0u ≡ J0 û ≡ J0. (3)

The total current associated with the counter-rotating disks is I� = J�
totalA

� = J0A, and
their combined magnetic moment has magnitude μ� = πa�2I�/c = πa2J0A/c. In a medium
composed of a uniform distribution of pairs of counter-rotating disks (with axes of rotation
parallel to the z-axis), where each pair occupies a volume V �, the average bulk magnetization
is,

M�
ave =

μ�

V �
ẑ =

πa2J0A

cV �
ẑ. (4)

2.2 The Centers of the Disks Have Uniform Velocity v with

Respect to the Lab Frame

In this case it is simplest to transform the charge and current densities from the inertial �

frame (in which the centers of the rotating disks are at rest) to the inertial lab frame via a
Lorentz transformation,

ρ = γv

(
ρ� +

v · J�
total

c2

)
≈ v · J0

c2
J = γv(J

�
total + ρ�v) ≈ J0, (5)

where for v � c we make the approximation γv ≈ 1. The total charge density ρ is nonzero
in the lab frame, and varies with azimuth around the disks.

We can confirm eq. (5) by transformations between the lab frame and the comoving
inertial frames of points on the disks, noting that a positive charge has velocity v + u with
respect to the lab frame, while a negative charge has velocity v − u. Then,

ρ+ = γv+uρ0, ρ− = −γv−uρ0, ρ = ρ0(γv+u − γv−u) ≈ 2ρ0

u · v
c2

=
v · J0

c2
, (6)

where we must expand γv±u to second order to maintain sufficient accuracy.
If the velocity v has a component in the plane of the counter-rotating disks they appear

to have an electric dipole moment in the lab frame (while remaining neutral overall). For
the case that v = v x̂ (and v � c) we write the position vector of a point on the rim of a
disk in the lab frame as x ≈ (vt + a cosφ) x̂ + a sinφ ŷ where φ is the angle between the
x-axis and radius vector a on the disks. Then, the electric dipole moment is,

p =

∫
ρx dVol ≈

∫ 2π

0

−J0v sinφ

c2
[(vt + a cosφ) x̂ + a sinφ ŷ] aA dφ

= −πa2AJ0v

c2
ŷ =

v

c
×M�

aveV
�. (7)

1We tacitly assume that the rotating disks are rigid, which assumption is consistent only for u � c [2].
Then, we avoid Ehrenfest’s paradox that the total charge on a disk might appear to be different in the lab
frame and in the rotating frame of the disk.
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For a medium consisting of many pairs of counter-rotating disks, the average bulk electric
polarization in the rotating frame is,

Pmag =
p

V
≈ v

c
× M�

ave, (8)

noting that to order v/c the volumes are related by V � ≈ V =. The polarization density
(8) is not related to the (relative) permittivity ε of the medium, which has been taken to be
unity. It is related to the magnetization of the medium (whether or not the medium can be
characterized by a permeability μ), as indicated by our use of the subscript mag.

The relation (7) is the low-velocity limit of the well-known result,

P = γv

(
P� +

v

c
×M�

)
, (9)

of special relativity (see, for example, chap. E III of [3] or sec. 18.6 of [4]), where P� is the
electric polarization density in the rest frame of the medium.2

2.3 The Centers of the Disks Rotate with Angular Velocity ω = ω ẑ
with Respect to the Lab Frame

Suppose the centers of the counter-rotating disks are at x′ = (r′, 0, 0) in the rotating frame.
The velocity of the centers of the disks with respect to the lab frame is then vcen = ω×x′ =
(0, ωr′, 0).

We can use the instantaneous comoving frame with velocity vcen and the results of sec. 2.2
to learn that the local charge and current densities in the lab frame are,

ρ ≈ J0 · vcen

c2
, J ≈ J0, (10)

where J0 = 2ρ0u is the current density associated with the counter-rotating disks in an
inertial frame where the centers of the disks are at rest (the � frame of sec. 2.1).

According to the transformations from the lab to the rotating frame [1], the local charge
density and current densities in the rotating frame are,

ρ′ = ρ ≈ J0 · vcen

c2
, J′ = J0 − ρv = J0 − J0 · vcen

c2
v ≈ J0, (11)

where v is the velocity with respect to the lab frame of the point of observation in the
rotating frame, so that v ≈ vcen and we neglect the term in v vcen/c

2 as being second order
in v/c.

Thus, the counter-rotating disks appear to have an electric dipole moment in the rotating
frame as well as in the lab frame (while remaining neutral overall). Writing the position

2The fact that a moving magnetization is associated with an electric polarization is often stated to
be a result of special relativity, with the implication that this result was not anticipated by prerelativistic
electrodynamics. However, Maxwell’s early vision of the nature of electromagnetic media placed emphasis
on “molecular vortices” from which his notions of electric charge and polarization were derived as secondary
concepts. For a historical review, see [5].

3



vector of a point on the rim of a disk as x′ = (r′ + a cos φ) x̂′ + a sinφ ŷ′ where φ is the angle
between the x′-axis and radius vector a on the disks, the electric dipole moment is,

p′ =

∫
ρ′ x′ dVol′ ≈

∫ 2π

0

J0ωr′ cos φ

c2
[(r′ + a cos φ) x̂′ + a sinφ ŷ′] aA dφ

=
πa2AJ0ωr′

c2
x̂′ =

ω · M�
ave

c
r′V � x̂′. (12)

For a medium consisting of many pairs of counter-rotating disks, the average bulk electric
polarization in the rotating frame is,

P′
mag =

p′

V ′ ≈
ω · M�

ave

c
r′ r̂′ =

ω · M′
ave

c
r′ r̂′, (13)

noting that the electric dipole moment of a pair of counter-rotating disks is in the radial
direction with respect to the center of the rotating frame, that the volumes are related
by V � ≈ V = V ′, and that the magnetizations are related by M� ≈ M = M′ [1]. The
polarization density (13) is not related to the permittivity ε of the medium, which has been
taken to be unity. It is related to the magnetization of the medium (whether or not the
medium can be characterized by a permeability μ), as indicated by our use of the subscript

mag.
Associated with the bulk polarization density P′

mag is an average bulk charge density,

ρ′
ave = −∇′ · P′

mag = − 1

r′
∂(r′P ′

mag,r)

∂r′
= −2ω · M′

ave

c
. (14)

This is exactly the form of the bound charge density in the rotating frame given in eq. (1)
in case of a uniform magnetization M′.

The present derivation of eq. (14) was based on the use of comoving inertial frames to
deduce the charge density ρ in the lab frame, followed by the transformation ρ′ = ρ from
the lab frame to the rotating frame. In contrast, eq. (1) was deduced via the principle of
general covariance [1]. The latter technique is very powerful, but leads to forms in noninertial
frames that may be “new” or surprising from the perspective of inertial observers. Here,
we have shown how one of these possibly surprising noninertial effects is consistent with
a sequence of arguments that may be appealing to inertial observers. That is, the charge
density −2ω · M′/c that appears in a rotating magnetized medium is in effect the density
−∇′ · P′

mag associated with an electric polarization density P′
mag that arises when electric

currents circulate in the rotating frame. In addition, there may be an “ordinary” electric
polarization P′

el associated with deformations of molecules induced by the electric field in
the rotating frame, with which there is associated a bulk charge density −∇′ · P′

el.
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