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1 Problem

This problem concerns the statistical analysis of data to determine an asymmetry parameter
that arises in the CP -violating decays of the neutral B mesons to a final state that is a CP
eigenstate.

The B mesons are produced, for example, at an e+e− collider, or at a pp̄ collider (as
is most relevant to the concerns of this problem), where there is an equal probability for

production of B0 and B
0

mesons. Presuming that you know whether the B meson was

created as a B0 and B
0
, the time dependence of number of decays to the final state of

interest has the form,

N±(t) =
N

2
e−t(1 ± A sinxt), (1)

where,

N is the total number of decays,

+(−) labels decays in which the B meson was born as a B0(B
0
),

A is the unknown CP -violating parameter,

x = ΔM/Γ is the known mixing parameter that desscribes the B0-B
0

oscillations,
time t is measured in units of the B0-meson lifetime.

What are the errors σA(x, N) on the asymmetry parameter A � 1 that can be obtained
from observation of a total of N decays for,

a) An analysis that ignores the decay time t?

b) An analysis that takes the decay time t into account?

What is the ratio of the error σA(x, N) obtained from analysis (a) to the that from
analysis (b) for B0

d mesons with xd ≈ 1/
√

2 (measured), and for B0
s mesons with xs ≈ 20

(estimated), again assuming that A � 1?

Recall that the smallest statistical errors on parameters deduced from data distributed
according to forms such as eq. (1) can be obtained via a so-called maximum likelihood analysis.
In brief, if distribution of observations of a measurable quantity t depends on an unknown
parameter a and a known parameter x according to a known functional form f(t, a, x), then
the likelihood L of a set {ti} of N observations is given by,

L(a) =
N∏

i=1

f(ti, a, x). (2)
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A version of the central limit theorem indicates that for large N the likelihood function
(2) has a Gaussian dependence on parameter a,

L(a) ∝ e−(a−a0)2/2σ2
a , (3)

where a0 is the “true” or “best” value of the parameter a, which maximizes the likelihood
function (2). The maximum-likelihood estimate of the error, σa, on a0 follows from eq. (3)
as,

1

σ2
a

= −∂2 lnL(a0, x)

∂a2
. (4)

2 Solution

This problem is extracted from my earlier note Maximum-Likelihood Analysis of CP -Violating
Asymmetries (Sept. 4, 1992), http://kirkmcd.princeton.edu/tndc/likelihood.pdf

2.1 Time-Integrated Analysis

In this analysis we do not record the time t of the B-meson decay, and simply integrate over
the distributions (1) to obtain,

N± =
N

2

∫ ∞

0

e−t(1 ± A sinxt) dt =
N

2

∫ ∞

0

e−t

(
1 ± A

eixt − e−ixt

2i

)
dt

=
N

2

∫ ∞

0

(
e−t ± A

e−t(1−ix) − e−t(1+ix)

2i

)
dt

=
N

2

[
1 ± A

2i

(
1

1 − ix
− 1

1 + ix

)]

=
N

2

(
1 ± A

x

1 + x2

)
. (5)

We now have only two observables, a decay of a B0 meson which event we call +, and a

decay of a B
0

meson which event we call −. The event distributions for these observations
have the form,

f± = N± = N
1 ± a

2
, (6)

where the asymmetry a is given by,

a =
N+ − N−
N+ + N−

= A
x

1 + x2
. (7)

This is often written as,

a = AD, where D =
x

1 + x2
(8)
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where D is called the dilution factor associated with the time-integrated analysis.
For an experiment in which N+ and N− events are observed, we form the likelihood

function,

L =
∏
+

f+

∏
−

f− = N
N+

+ N
N−
− = NN

(
1 + a

2

)N+
(

1 − a

2

)N−

. (9)

The needed derivatives of lnL are,

lnL = N+ ln(1 + a) + N− ln(1 − a) + constant, (10)

∂ lnL
∂a

=
N+

1 + a
− N−

1 − a
, (11)

∂2 lnL
∂a2

= − N+

(1 + a)2
− N−

(1 − a)2
. (12)

On setting the first derivative to zero to find the value of a that maximizes the likelihood,
we find the usual expression for the asymmetry,

a =
N+ − N−
N+ + N−

. (13)

From this we express N+ and N− in terms of a and N = N+ + N− to evaluate the error on
the estimate of a as,

σa =

√
1 − a2

N
, (14)

using eq. (4). This agrees with the usual analysis based on the binomial distribution.
Finally, we obtain the estimate of the error, σi, on the CP -violating asymmetry A from

the time integrated analysis by recalling eq. (8),

σi = σA =
σa

D
=

1

D

√
1 − A2D2

N
≈ 1

D
√

N
=

1 + x2

x
√

N
, (15)

where the approximation holds for small values of A.
The error on A is large for both large and small values of the mixing parameter x. The

minimum error as a function of x occurs if x = 1, for which σi = 2/
√

N . As x ≈ 1/
√

2 for
the B0

d meson, a time-integrated analysis is rather effective in this case.

2.2 Time-Dependent Analysis

We now determine what additional statistical power can be expected if we perform an analysis
of the time-dependent CP -violating decay distributions given in eq. (1). The likelihood
function is then,

L =
∏
+

N+

∏
−

N− = NN
∏
+

e−t+(1 + A sinxt+)
∏
−

e−t−(1 − A sinxt−), (16)

where subscript + labels events in which the B was born as a B0, and − labels events in

which the B was born as a B
0
. This form of the likelihood function is normalized to include

information both on the shape as well as the integral of the decay distributions.
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According to the maximum likelihood method we calculate,

lnL = −
∑
+

t+ +
∑
+

ln(1 + A sinxt+) −
∑
−

t− +
∑
−

ln(1 − A sinxt−),(17)

∂ lnL
∂A

=
∑
+

sin xt+
1 + A sinxt+

−
∑
−

sinxt−
1 −A sinxt−

, (18)

1

σ2
A

= −∂2 lnL
∂A2

=
∑
+

sin2 xt+
(1 + A sinxt+)2

+
∑
−

sin2 xt−
(1 − A sinxt−)2

. (19)

We estimate the sums by integrals, weighting events according to the distribution (1),

∑
±

f(t±) ≈ N

2

∫ ∞

0

dt±e−t±(1 ± A0 sinxt±)f(t±), (20)

where A0 is the “true” value of the asymmetry parameter A.
We readily verify that setting A = A0 causes the integral form of eq. (18) to vanish, so

that the “best-fit” value of A according to the maximum likelihood method is indeed the
“true” value. We do not, however, obtain a simple analytic form of the estimate of A0 from
the time-dependent data.

Turning to the estimate of the error, σA, we combine eqs. (19) and (20), and set A to A0

to find,

1

σ2
A

≈ N

2

∫ ∞

0

dt+
e−t+ sin2 xt+
1 + A0 sin xt+

+
N

2

∫ ∞

0

dt−
e−t− sin2 xt−
1 − A0 sinxt−

= N

∫ ∞

0

dte−t sin2 xt

1 − A2
0 sin2 xt

≈ N

∫ ∞

0

dte−t sin2 xt

= N

∫ ∞

0

dte−t

(
eixt − e−ixt

2i

)2

=
N

4

∫ ∞

0

dt
(
2e−t − e−t(1−2ix) − e−t(1+2ix)

)
=

N

4

(
2 − 1

1 − 2ix
− 1

1 + 2ix

)
=

2x2N

1 + 4x2
, (21)

where we ignore the time-varying term in the denominator for small A0,
We summarize the result (21) of the time-dependent analysis by writing,

σA = σt ≈ 1

Dt

√
N

with Dt ≡
√

2x2

1 + 4x2
. (22)

The time-dependent dilution factor Dt is larger than the time-integrated dilution factor of
eq. (8) for any value of x, and consequently the time-dependent analysis is always more
powerful statistically, as is to be expected.

In particular, the time-dependent analysis remains very powerful for large x (as is the
case for B0

s mesons), where a time-integrated analysis yields no information. Indeed, for the
time-dependent analysis,

σA ≈
√

2

N
for large x. (23)
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Variants on the time-dependent likelihood function (16) are possible. For example, we
could analyze only the shapes of the time distributions, ignoring the difference between the
numbers of events N+ and N−. In this case, the distributions (1) should be renormalized to
unity, and the corresponding likelihood function would be,

L =
∏

i

e−ti(1 + A sinxti)

1 + A x
1+x2

∏
j

e−tj(1 −A sinxtj)

1 − A x
1+x2

. (24)

The error σs on the asymmetry parameter from the shape analysis is,

σs ≈ 1

Ds

√
N

with Ds ≡ x

1 + x2

√
1 + 2x4

1 + 4x2
. (25)

This result is, of course, poorer than the full time-dependent analysis (eq. (22)), but ap-
proaches the same accuracy for large x where only the shape matters. The shape analysis
is less powerful than the time-integrated analysis (eq. (15)) for x <

√
2, which includes the

case of B0
d mesons.

The full time-dependent result (22) can be considered as the proper combination of the
time-integrated and the shape analyses. We readily verify the validity of this by noting that,

1

σ2
t

=
1

σ2
i

+
1

σ2
s

, (26)

on comparing eqs. (22), (15), and (25).
As a numerical example, we consider the case of x = 1/

√
2, as holds approximately for

B0
d mesons. We then have,

σt =

√
3

N
=

1.73√
N

, σi =
3√
2N

=
2.12√

N
, σs =

3√
N

. (27)

It is remarkable that the time-dependent analysis is only 20% better than the time-integrated
analysis, while the former requires a costly silicon vertex detector.

In contrast, the mixing parameter of the B0
s mesons is too large to have been measured

thus far, but it is estimated that xs ≈ 20. In this case, eqs. (15) and (22) yields,

σi ≈ 1 + x2
s

xs

√
N

≈ xs√
N

=
20√
N

, and σt ≈
√

2x2

(1 + 4x2)N
≈ 1√

2N
. (28)

Here, the time-dependent analysis is 28 times better than the time-integrated analysis.

5


