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1 Problem

In principle, a pair of counterpropagating waves (with separate sources) whose waveforms
are the negative of each other can completely cancel at some moment in time. Does this
destructive interference also destroy the energy of the waves at this moment?

Comment also on the case of waves from a single source.

2 Solution

While the answer is well-known to be NO, and energy is conserved in the superposition of
waves, discussion of this is sparse in textbooks.1,2,3

A key here is that the energy associated with a wave has two forms, generically called
“kinetic” and “potential”, that are equal for a wave propagating in a single direction, while
in the case of destructive (or constructive) interference of counterpropagating waves one form
of energy decreases and the other increases such that the total energy remains constant. The
character of energy conservation in the case of two sources is well illustrated by a pair of
counterpropagating waves in one dimension, as discussed in sec. 2.1.

1Thanks to Hans Schantz for pointing this out. Pedagogic discussions of this issue include R.C. Levine,
False paradoxes in superposition of electric and acoustic waves, Am. J. Phys. 48, 28 (1980),
http://kirkmcd.princeton.edu/examples/EM/levine_ajp_48_28_80.pdf
W.N. Mathews, Jr, Superposition and energy conservation for small amplitude mechanical waves, Am. J.
Phys. 54, 233 (1986), http://kirkmcd.princeton.edu/examples/mechanics/mathews_ajp_54_233_86.pdf
N. Gauthier, What happens to energy and momentum when two oppositely-moving wave pulses overlap?
Am. J. Phys. 71, 787 (2003), http://kirkmcd.princeton.edu/examples/EM/gauthier_ajp_71_787_03.pdf
R. Drosd, L. Minkin and A.S. Shapovalov, Interference and the Law of Energy Conservation, Phys. Teach.
52, 428 (2014), http://kirkmcd.princeton.edu/examples/mechanics/drosd_pt_52_428_14.pdf

2A one-dimensional wave moving in one direction can have only one source (in that a one-dimensional
wave from one source cannot pass through another source), and there can be only one such wave at a given
point, such that wave interference is not a relevant concept here. We can write 0 = sin(kx−ωt)−sin(kx−ωt),
but this mathematical identity does not have the physical implication that two distinct waves are present,
each with nonzero energy.

A one-dimensional wave could have a source at x = a and a sink at x = b > a, such that energy is
transmitted from a to b, where fraction α < 1 of it is absorbed. For example, if the wave for a < x < b has
the form sin(kx−ωt), we could say that the wave

√
1 − α sin(kx−ωt) for x > b is the result of interference,

say, sin(kx − ωt) + (1 − √
1 − α) sin(kx − ωt + π). While one might say that this is an example where

destructive interference “destroyed” energy, it seems better to say that the energy was absorbed at x = b,
which reduced the amplitude of the wave for x > b. This footnote is based on comments by Carlo Mantovani,
May 8, 2018.

3It appears that the trivial case of a null wave (with zero energy) is sometimes mistakenly described as
an example of destructive interference of two waves moving with opposite amplitudes (but the same energies)
in the same direction, which has led to the misimpression that destructive interference can destroy energy.

1



Interference in a wave from a single source can only occur for propagation in two or more
dimensions where the system includes entities (such as “slits” in a screen) that “scatter” one
portion of the wave onto another portion. Then, energy which would appear in one region
in the absence of “scattering” appears elsewhere in its presence. The character of energy
conservation in the case of a single source is illustrated by double-slit interference in sec. 2.2.

2.1 Counterpropagating Waves from Two Sources in One

Dimension

Here, we present three related arguments for counterpropagating one-dimensional waves.

2.1.1 Transverse Waves on a Stretched String

A string of linear mass density ρ under tension T has wave speed,

c =

√
T

ρ
. (1)

Writing the transverse displacement as y(x, t), the kinetic energy associated with this wave-
form is,

KE =

∫
ρ ẏ2

2
dx, (2)

where ẏ = dy/dt. The potential energy can be taken the work done in stretching the string,

PE =

∫
Tdl =

∫
T

(√
1 + y′2 − 1

)
dx ≈

∫
Ty′2

2
dx, (3)

where y′ = dy/dx. The first derivatives for traveling waves y(x± ct) are related by,

ẏ = ±cy′, ẏ2 = c2y′2 =
T

ρ
y′2, (4)

which implies that KE = PE for a wave traveling in a single direction, and that the total
energy U of such a wave is given by,

U = KE + PE = 2KE = 2PE. (5)

For two waves propagating in opposite directions with similar waveforms,

y1(x, t) = y(x − ct), y2(x, t) = ±y1(x,−t) = ±y(x + ct). (6)

The total energy of the waves when they don’t overlap is,

Utotal = KE1 + PE1 + KE2 + PE2 + 2KE + 2PE = 4KE = 4PE, (7)
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where the energies without subscripts are the common values associated with the individual
waves. The first derivatives for the superposition ytot = y1 + y2 = y(x − ct) ± y(x + ct) of
the two waves are,

ẏtot = ẏ1 + ẏ2, = −c [y′(x − ct)∓ y′(x + ct)] y′
tot = y′

1 + y′
2 = y′(x− ct) ± y′(x + ct), (8)

Destructive Interference at t = 0

Destructive interference in the wave ytot at time t = 0 corresponds to the lower signs in
eq. (8), in which case we have at time t = 0,4

ẏtot(t = 0) = 2ẏ(x), y′
tot(t = 0) = 0, (9)

KEtot(t = 0) =

∫
ρ ẏ2

tot

2
dx = 4

∫
ρ ẏ2

2
dx = 4KE, (10)

PEtot(t = 0) ≈
∫

Ty′2
tot

2
dx = 0, (11)

Utot(t = 0) = KEtot(t = 0) + PEtot(t = 0) = 4KE = Utotal, (12)

such that energy is conserved. This destructive interference destroys the potential energy,
but doubles the kinetic energy, at time t = 0.

Constructive Interference at t = 0

Similarly, constructive interference in ytot at time t = 0 corresponds to the upper signs
in eq. (8), in which case we have at time t = 0,

ẏtot(t = 0) = 0, y′
tot(t = 0) = 2y′(x), (13)

KEtot(t = 0) =

∫
ρ ẏ2

tot

2
dx = 0, (14)

PEtot(t = 0) ≈
∫

Ty′2
tot

2
dx = 4

∫
Ty′2

2
dx = 4PE, (15)

Utot(t = 0) = KEtot(t = 0) + PEtot(t = 0) = 4PE = Utotal. (16)

and again energy is conserved. This constructive interference doubles the potential energy,
but destroys the kinetic energy, at time t = 0.

2.1.2 Transmission Line

A two-conductor transmission line is characterized by capacitance C and inductance L per
unit length (ignoring the electrical resistance of the conductors). We consider the voltage
difference V (x, t) between the two conductors, which carry equal and opposite currents
±I(x, t). Then, the speed of waves along the line is,

c =
1√
LC

, (17)

4This case also corresponds to destructive interference at time t = 0 in y′tot but constructive interference
(at this time) in ẏtot.
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and the voltage and currents are related by,

V = ±IZ, Z =

√
L

C
, (18)

where the upper(lower) sign holds for waves moving in the +x(−x) direction, and Z is the
(real) transmission-line impedance.5

The energy of a wave has both capacitive and inductive terms,

UC =

∫
CV (x)2

2
dx, UL =

∫
LI(x)2

2
dx, (19)

For a wave that moves only in a single direction,

UC =

∫
CV (x)2

2
dx =

∫
CZ2I(x)2

2
dx =

∫
LI(x)2

2
dx = UL, (20)

and the total energy of such a wave is,

U = UC + UL = 2UC = 2UL. (21)

For two waves propagating in opposite directions with similar waveforms,

V1(x, t) = V (x − ct), V2(x, t) = ±V1(x,−t) = ±V (x + ct), (22)

I1(x, t) =
V1

Z
=

V (x− ct)

Z
= I(x − ct), I2(x, t) = −V2

Z
= ∓I(x + vt). (23)

The total energy of the waves when they don’t overlap is,

Utotal = UC,1 + UL,1 + UC,2 + UL,2 = 2UC + 2UL = 4UC = 4UL, (24)

where the energies without subscripts are the common values associated with the individual
waves. The total voltage and current for the superposition of the two waves are,

Vtot = V1 + V2 = V (x− ct) ± V (x + ct), Itot = I1 + I2 = I(x− ct) ∓ I(x + ct). (25)

Destructive Interference at t = 0

Destructive interference of the voltage Vtot at time t = 0 corresponds to the lower signs
in eq. (25), in which case we have at time t = 0,6

Vtot(t = 0) = 0, Itot(t = 0) = 2I(x), (26)

UC,tot(t = 0) =

∫
CV 2

tot

2
dx = 0, (27)

UL,tot(t = 0) =

∫
LI2

tot

2
dx = 4

∫
LI2

2
dx = 4UL, (28)

Utot(t = 0) = UC,tot(t = 0) + UL,tot(t = 0) = 4UL = Utotal, (29)

5See, for example, K.T. McDonald, Distortionless Transmission Line (Nov. 11, 1996),
http://kirkmcd.princeton.edu/examples/distortionless.pdf.

6This case also corresponds to constructive interference at time t = 0 in the current Itot.
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such that energy is conserved. This destructive interference doubles the inductive energy,
but destroys the capacitive energy, at time t = 0.

Constructive Interference at t = 0

Constructive of the voltage Vtot at time t = 0 corresponds to the upper signs in eq. (25),
in which case we have at time t = 0,

Vtot(t = 0) = 2V (x), Itot(t = 0) = 0, (30)

UC,tot(t = 0) =

∫
CV 2

tot

2
dx = 4

∫
CV 2

2
dx = 4UC , (31)

UL,tot(t = 0) =

∫
LI2

tot

2
dx = 0, (32)

Utot(t = 0) = UC,tot(t = 0) + UL,tot(t = 0) = 4UC = Utotal, (33)

and again energy is conserved. This constructive interference destroys the inductive energy,
but doubles the capacitive energy, at time t = 0.

2.1.3 Plane Electromagnetic Waves

A plane electromagnetic wave propagating in vacuum in the x-direction with, say, y polar-
ization had electric and magnetic fields (in Gaussian units),

E = E(x − ct) = E(x − ct) ŷ, B = B(x − ct) = E(x − ct) ẑ, (34)

where c is the speed of light in vacuum.
The energy of a wave has both electric and magnetic terms,

UE =

∫
E2

8π
dVol, UM =

∫
B2

8π
dVol = UE , (35)

and the total energy of such a wave is,

U = UE + UM = 2UE = 2UM . (36)

For two waves propagating in opposite directions with similar waveforms,

E1(x, t) = E(x− ct), B1(x, t) = B(x− ct), (37)

E2(x, t) = ±E(x + ct), B2(x, t) = ∓B(x + ct). (38)

The total energy of the waves when they don’t overlap is,

Utotal = UE,1 + UM,1 + UE,2 + UM,2 = 2UE + 2UM = 4UE = 4UM , (39)

where the energies without subscripts are the common values associated with the individual
waves. The total electric and magnetic fields for the superposition of the two waves are,

Etot = E1 + E2 = E(x − ct)± E(x + ct), Btot = B1 + B2 = B(x − ct) ∓ B(x + ct).(40)
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Destructive Interference at t = 0

Destructive interference in the magnetic field Btot at time t = 0 corresponds to the lower
signs in eq. (40), in which case we have at time t = 0,7

Etot(t = 0) = 2E(x), Btot(t = 0) = 0, (41)

UE,tot(t = 0) =

∫
E2

tot

8π
dVol = 4

∫
E2

8π
dVol = 4UE , (42)

UM,tot(t = 0) =

∫
B2

tot

8π
dVol = 0, (43)

Utot(t = 0) = UE,tot(t = 0) + UB,tot(t = 0) = 4UE = Utotal, (44)

such that energy is conserved. This destructive interference destroys the magnetic energy at
time t = 0, but doubles the electric energy, at time t = 0.

Constructive Interference at t = 0

Similarly, constructive interference in the magnetic field Btot at time t = 0 corresponds
to the upper signs in eq. (40), in which case we have at time t = 0,

Etot(t = 0) = 0, Btot(t = 0) = 2B(x), (45)

UE,tot(t = 0) =

∫
E2

tot

8π
dVol = 0, (46)

UM,tot(t = 0) =

∫
B2

tot

8π
dVol = 4

∫
B2

2
dVol = 4UM , (47)

Utot(t = 0) = UE,tot(t = 0) + UM,tot(t = 0) = 4UM = Utotal, (48)

and again energy is conserved. This constructive interference doubles the magnetic energy,
but destroys the electric energy, at time t = 0.

2.2 The Double Slit Experiment with a Single Source

Following Young,8 we consider a line source of cylindrical light waves of wavelength λ that
impinge on a planar screen that is parallel to the line source at closest distance large compared
to λ, as shown in the figure on the next page The screen has two narrow line slits, parallel
to the line source and separated by distance D, located symmetrically about the line on the
screen closest to the source. Beyond the planar screen is a cylindrical screen of radius R � λ
on which the intensity of the light is observed.

We first to consider scalar waves (i.e., scalar diffraction theory), with amplitude A e−iωt

at each of the two slits, where A is a complex number, ω = kc = 2πc/λ and c is the speed
of light in vacuum. The intensity of a wave at some point is proportional to the absolute
square of its amplitude there. We suppose the units of A are such that the (time-average)
power per unit length passing through each slit is A2.

7This case also corresponds to constructive interference at time t = 0 in the electric field Etot.
8T. Young, On the Nature of Light and Colours, Lecture 39, Course of Lectures on Natural Philosophy

and Mechanical Arts (London, 1897),
http://kirkmcd.princeton.edu/examples/optics/young_lecture_39.pdf.
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The intensity on the cylindrical screen is uniform, with total power P0 = A2 per unit
length, and hence the angular distribution of (time-average) power per unit length on the
half-cylinder screen from the light that passes through a single slit is,

dP

dθ
=

P0

π
=

A2

π
, P =

∫ π/2

−π/2

dP

dθ
dθ = P0. (49)

In the absence of interference, the power incident on the distance cylindrical screen would
be 2P0.

The interference pattern of the waves beyond the slits can be computed according to the
method of Huygens.9 The path length for light traveling at angle θ from the two slits to the
distant screen has path difference d = D sin θ, and hence phase difference,

Δφ =
2πd

λ
=

2πD sin θ

λ
= kD sin θ. (50)

The (time-average) power incident on the distant cylindrical screen at angle θ depends
on the absolute square of the sum of the amplitudes of the light that passes through the two
slits, and has angular distribution dP/dθ and total power P given by,

dP

dθ
=

P0

∣∣1 + eiΔφ
∣∣2

π
=

2P0

π
(1 + cos Δφ), (51)

P =

∫ π/2

−π/2

dP

dθ
dθ =

2P0

π

∫ π/2

−π/2

[1 + cos(kD sin θ)] dθ = 2P0[1 + J0(kD)], (52)

9C. Huygens, Treatise on Light (1678, English translation, Macmillan, 1912), p. 21,
http://kirkmcd.princeton.edu/examples/optics/huygens_treatise_on_light.pdf.
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noting that10

J0(x) =
1

π

∫ π/2

−π/2

cos(x sin θ) dθ. (53)

Since the Bessel function J0(x) oscillates about zero, energy is conserved only “on average”
in an analysis of the double-slit experiment via scalar diffraction theory.11

A more accurate theory of electromagnetic waves characterizes the flow of energy via
the Poynting vector S = E × H.12,13 An analytic solution for the double-slit experiment
apparently does not exist, but numerical computations are reported by Jeffers et al.,14 with
lines of (energy-conserving) Poynting flux as shown below.15 The electromagnetic analysis
matches that of scalar diffraction theory for small angles to the direction of incidence, but
differs at large angles such that energy is conserved in detail for any slit separation.

10See, for example, eq. 9.1.18 of M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
(NBS, 1964), http://kirkmcd.princeton.edu/examples/EM/abramowitz_and_stegun.pdf.

11This is noted in sec. 5 of A. Lundin, Interference and Energy Conservation in Phased Antenna Arrays
and Young’s Double Slit Experiment (Dec. 12, 2012),
http://www.diva-portal.org/smash/get/diva2:576304/FULLTEXT01.pdf.

12J.H. Poynting, On the Transfer of Energy in the Electromagnetic Field, Phil. Trans. Roy. Soc. London
175, 343 (1884), http://kirkmcd.princeton.edu/examples/EM/Poynting_ptrsl_175_343_84.pdf.

13In so-called Bohmian quantum mechanics a photon is a point particle whose “Bohmian trajectory” is
essentially a line of the Poynting vector field. See, for example, C. Philippidis, C. Dewdney and B.J. Hiley,
Quantum Interference and the Quantum Potential, Nuovo Cim. 52B, 15 (1979),
http://kirkmcd.princeton.edu/examples/QM/philippidis_nc_52b_15_79.pdf.

14S. Jeffers et al., Classical Electromagnetic Theory of Diffraction and Interference: Edge, Single-Slit and
Double-Slit Solutions, in Waves and Particles in Light and Matter, A. van der Merwe and A. Garuccio, eds.
(Plenum Press, New York, 1994), p. 309,
http://kirkmcd.princeton.edu/examples/EM/jeffers_wplm_309_94.pdf.

15See also S. Kocsis et al., Observing the Average Trajectories of Single Photons in a Two-Slit Interfer-
ometer, Science 332, 1170 (2011), http://kirkmcd.princeton.edu/examples/QM/kocsis_science_332_1170_11.pdf
and K.Y. Bliokh et al., Photon trajectories, anomalous velocities and weak measurements: a classical inter-
pretation, New J. Phys. 15, 073022 (2013),
http://kirkmcd.princeton.edu/examples/QM/bliokh_njp_15_073022_13.pdf
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The essence of energy conservation in waves from a single source is that regions of higher
energy density are compensated by regions of lower energy density.16

2.3 Equal and Opposite Electric Charges (Aug. 19, 2021)

We consider the idealized case where an electron and positron approach one another with
equal and opposite, constant velocities, until they meet at the origin at time t = 0, and
either annihilate one another or pass through each other.17

If the positive charge has position x+(t) = vt and the negative charge has position
x+(t) = −vt for constant velocity v, then their electromagnetic fields are,18

E(x, t) = E+ + E− =
q

γ2r2
+(1 − β2 sin2 φ)3/2

r̂+ − q

γ2r2−(1 − β2 sin2 φ)3/2
r̂−, (55)

B(x, t) = B+ + B− = β × (E+ − E−), (56)

where r± = x− x±.
At time t = 0, the electric field (55) is zero everywhere, which is a kind of destructive

interference. However, the magnetic field (56) is nonzero everywhere, B(t = 0) = 2B+(t =
0). Hence, the energy UEM =

∫
(E2 + B2) dVol/8πc of the electromagnetic field does not

vanish at time t = 0, but remains spread out over all space.
If the charges somehow pass the through one another at the origin and continued there-

after with uniform velocities, eqs. (55)-(56) would hold for all times.
If the charges annihilate one another at time t = 0, then for time t > 0, both E and B

are zero within a sphere of radius ct about the origin, while outside this sphere eqs. (55)-(56)
still hold.

16Comments on energy conservation in the closely related case of 3-dimensional waves from two sources
are given, for example, in Y.-S. Hoh, On the electromagnetic wave omnidirectional interference phenomena,
Am. J. Phys. 55, 570 (1987), http://kirkmcd.princeton.edu/examples/EM/hoh_ajp_55_570_87.pdf.

17For more details of this example, and references to papers that found it “paradoxical”, see
http://kirkmcd.princeton.edu/examples/annihilate.pdf

18The electromagnetic fields of a charge q with uniform velocity v were first deduced in 1888 by Heav-
iside, http://kirkmcd.princeton.edu/examples/EM/heaviside_electrician_22_147_88.pdf (and per-
haps more accessibly by Thomson in 1889, http://kirkmcd.princeton.edu/examples/EM/thomson_pm_28_1_89.pdf.)

E(x, t) =
q

γ2r2(1 − β2 sin2 φ)3/2
r̂, B = β ×E, β =

v
c

, γ =
1√

1 − β2
, (54)

in Gaussian units, where rx− xq is the distance from the present position xq(t) of the charge to that of the
observer at x, φ is the angle between r and v, and c is the speed of light in vacuum.
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