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1 Problem

Discuss the stability of levitation of a small diamagnetic sphere of radius b, mass m and
(relative) permeability μ < 1 in the magnetic field due to a horizontal disk of radius a and
height h � a that has uniform magnetization M = M ẑ in the vertical direction. “Small”
means that b � a.

Find the range of equilibrium heights z0 above the plane of the magnetized disc for which
the motion is stable against small perturbations.

2 Solution

The possibility of diamagnetic levitation was mentioned in the first theoretical paper on
diamagnetism [1] (by W. Thomson in 1847 at age 23). See also [2].

Diamagnetic levitation was first observed in 1939 [3]. See also [4, 5]. A superconductor
can be regarded as an extreme form of diamagnetism, with relative permeability μ = 0;
levitation of a superconductor was first observed in 1945 [6, 7].

This problem is closely related to that of the LevitronTM, a well-known science toy [8, 9,
10, 11, 12].1 The 2000 IgNobel Prize in Physics was awarded to Berry and Geim for their
study of diamagnetic levitation [13]. See also [14, 15].

Other forms of levitation are possible, such as via eddy currents in liquid and solid metals
induced by AC currents [16]. For general reviews, see [17, 18]. A recently discovered variant
on diamagnetic levitation [19] is discussed in sec. 2.5.

See the Appendices for general remarks on stability of test objects in a static electric
or magnetic field. In particular, Earnshaw’s theorem [21] does not preclude stability of a
diamagnetic object in a static magnetic field.

2.1 The Magnetic Field On the Axis of the Disk

We recall that the uniform magnetization M of the disk can be thought of a due to internal
current loops whose net current density is zero everywhere inside the disk, but which leads
to a surface current density cM× dS on surface area element dS (in Gaussian units). If M
is vertical, the equivalent surface currents exist only on the vertical sides of the disk, and
the total current circulating around the sides, of height h is,

I = cMh. (1)

1A variant in which a magnetized disk is levitated between a pair of diamagnetic sheets is marketed at
http://www.kjmagnetics.com/proddetail.asp?prod=LEV2
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When height h is much less than the radius a of the disk, this current can be thought of
as a line current when calculating the magnetic field.

The magnetic field on the axis of the disk is readily calculated using the Biot-Savart law,

Bz(0, z) =
I

c

∮
(dl× r)|z

r3
=

2πaI

c

a

r3
=

2πa2hM

(a2 + z2)3/2
. (2)

2.2 The Induced Magnetic Moment of the Diamagnetic Sphere

In the presence of an external magnetic field the diamagnetic sphere takes on a magnetic
moment m. In the present problem the radius of the sphere b is small compared to that of
the characteristic spatial extent a of the magnetic field, so we take the external field to be
uniform over the sphere.

We recall that the magnetization density M of a permeable sphere is uniform when the
sphere is placed in a uniform external magnetic field. The magnetic moment m is related to
the magnetization density by,

m =
4π

3
b3M. (3)

We also recall that the self magnetic field inside a uniform magnetized sphere is uniform,
and that the self magnetic field outside the sphere is just that of the dipole µ.

One way to relate these quantities is to imagine the uniform magnetization m as causing
(or being caused by) a surface density σ = M · n̂ of magnetic poles. Then, if we consider a
Gaussian pillbox that encloses a small “polar cap” on the magnetized sphere, we learn that
the self field H obeys,

Hout(pole) −Hin = 4πσ = 4πM =
3

b3
|m| . (4)

The self field outside the sphere is the dipole form,

Hout =
3(m · r̂)r̂ − m

r3
, (5)

so the self field just above the pole is,

Hout(pole) =
2 |m|
b3

. (6)

Hence, eq. (4) tells us that,

Hin = −m

b3
. (7)

The internal self magnetic field B is also uniform, and is related by (in Gaussian units),

Bin = Hin + 4πM = Hin +
3m

b3
=

2m

b3
. (8)

The total fields inside the sphere are the sum of the internal fields and the external fields,

B = Bext + Bin = Bext +
2m

b3
, H = Hext + Hin = Bext − m

b3
, (9)
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since the external field obeys Bext = Hext. Inside the permeable sphere we have B = μH,
where μ is the (relative) magnetic permeability, so,

Bext +
2m

b3
= μ

(
Bext − m

b3

)
. (10)

Thus, the magnetic moment of the sphere is,

m =
μ − 1

μ + 2
b3Bext. (11)

For a diamagnetic sphere, μ < 1, so the induced magnetic moment is opposite in direction
to that of the external field, as is to be expected from Lenz’ law.

2.3 Conditions for Stability

To discuss the center of mass motion, we construct a potential energy U(r, z). Then at an
equilibrium point F = −∇U = 0, and the equilibrium is stable only if the energy increases
for any small departure from equilibrium, i.e., only if the second spatial derivatives are
positive at the equilibrium.

The gravitational potential energy is just mgz, taking the z-axis as vertically upwards.
The potential energy of a permeable object with magnetic dipole moment m (and no remnant
magnetization) at rest in an external magnetic field B is −m · B/2 (rather than −m · B
as for a “permanent” magnetic moment). See, for example, sec. B.6 of [22]. In the present
case, the moment is induced by the field according to eq. (11), so,

U(r, z) = mgz − m · B(r, z)

2
= mgz − 1

2

μ − 1

μ + 2
B2(r, z) . (12)

For a circularly symmetric field, B(r, z), the equilibrium points will be on the z-axis of
symmetry, and the condition that (0, z0) be an equilibrium point is,2

Fz = −∂U(0, z0)

∂z
= 0 = −mg +

1

2

μ − 1

μ + 2

∂B2(0, z0)

∂z
, (13)

Fr = −∂U(0, z0)

∂r
= 0 =

1

2

μ − 1

μ + 2

∂B2(0, z0)

∂r
. (14)

Conditions that this equilibrium be stable are,3

∂2U(0, z0)

∂z2
= −1

2

μ − 1

μ + 2

∂2B2(0, z0)

∂z2
> 0 , (15)

∂2U(0, z0)

∂r2
= −1

2

μ − 1

μ + 2

∂2B2(0, z0)

∂r2
> 0 . (16)

2Equations (13)-(14) indicate that the magnetic force on a diamagnetic object (μ < 1) is towards regions
of weaker magnetic field, as noted by Faraday in Art. 2269 of [23], in which he first identified diamagnetism.
An implication is that a diamagnetic object could be levitated above a suitable magnet, as considered here,
while a paramagnetic/ferromagnetic object (with μ > 1) might be levitated/suspended below a magnet. The
latter effect was first observed in 1937 [24]; but, as noted in Appendix B, such a suspension of a ferromagnetic
needle is not fully stable, and a supplementary mechanism for horizontal stability is required.

3These conditions are necessary, but would not be sufficient if ∂2U(0, z0)/∂x∂z were nonzero, as men-
tioned in Appendix C. However, as indicated by eq. (30) below, this derivative is zero for the present example.
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Since μ < 1 for a diamagnetic sphere, the stability conditions are ,

∂2B2(0, z0)

∂z2
> 0 , (17)

∂2B2(0, z0)

∂r2
> 0 . (18)

2.4 Evaluation of the Field Derivatives

To complete the problem, we express the magnitude of the field B in terms of only its z-
component, Bz(0, z) from eq. (2). The approach is to use Maxwell’s equations, ∇ · B = 0
and ∇ × B = 0, to relate Br to Bz. From the above, we see that we will use only the first
and second derivatives of B, so it suffices to use a series expansion to second order in r and
z. Say,

Bz(r, z) = B0 + B1(z − z0) + B2(z − z0)
2 + B3r + B4r

2 + B5r(z − z0) , (19)

and,
Br(r, z) = C0 + C1(z − z0) + C2(z − z0)

2 + C3r + C4r
2 + C5r(z − z0) . (20)

In cylindrical coordinates we have,

∇ · B =
1

r

∂rBr

∂r
+

∂Bz

∂z
= 0 , (21)

and,

(∇ × B)φ =
∂Br

∂z
− ∂Bz

∂r
= 0 . (22)

From eq. (21),

[C0 + C1(z − z0) + C2(z − z0)
2] /r +

2C3 + 3C4r + 2C5(z − z0) + (23)

B1 + 2B2(z − z0) + B5r = 0 ,

and so,

C0 = C1 = C2 = 0, C3 = −B1

2
, C4 = −B5

3
, C5 = −B2 . (24)

That is,

Br(r, z) = −B1r

2
− B5r

2

3
− B2r(z − z0) . (25)

Then, from eq. (22),
− B2r − B3 − 2B4r − B5(z − z0) = 0 , (26)

and hence,

B3 = B5 = 0, B4 = −B2

2
. (27)

Altogether,

Bz(r, z) = B0 + B1(z − z0) + B2(z − z0)
2 − B2r

2

2
, (28)
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and,

Br(r, z) = −B1r

2
− B2r(z − z0) , (29)

accurate to second order in r and z.
To evaluate the equilibrium conditions (13)-(14) and the stability conditions (17)-(18)

we need B2 accurate to second order,

B2 = B2
z + B2

r = B2
0 + 2B0B1(z − z0) + (B2

1 + 2B0B2)(z − z0)
2 +

(
B2

1

4
− B0B2

)
r2. (30)

The axial magnetic field is given by eq. (2),

Bz(0, z) =
2πa2hM

(a2 + z2)3/2
. (31)

Thus,

B0 = Bz(0, z0) =
2πa2hM

(a2 + z2
0)

3/2
, (32)

B1 =
∂Bz(0, z0)

∂z
= − 6πa2hMz0

(a2 + z2
0)

5/2
, (33)

and,

B2 =
1

2

∂2Bz(0, z0)

∂z2
=

3πa2hM(4z2
0 − a2)

(a2 + z2
0)

7/2
. (34)

The condition (13) for vertical equilibrium is that,

− 2mg
μ + 2

μ − 1
= −∂B2(0, z0)

∂z
= −2B0B1 =

24π2a4h2M2z0

(a2 + z2
0)

4
, (35)

The righthand side of eq. (35) reaches a maximum for z0 = a/
√

7, so vertical equilibrium
exists only if,

− mg
μ + 2

μ − 1
<

1029
√

7π2h2M2

1024a3
. (36)

When the equilibrium exists, there are always two solutions, one with z0 < a/
√

7 and the
other with z0 > a/

√
7. We find below that only the solution with z0 > a/

√
7 is stable.

The condition (14) for radial equilibrium is trivially satisfied at r = 0.
The condition (18) that the radial equilibrium be stable is that,

2
∂2B2(0, z0)

∂z2
= B2

1 − 4B0B2 =
12π2a4h2M2(2a2 − 5z2

0)

(a2 + z2
0)

5
> 0, (37)

which requires that z0 < a
√

2/5.
The condition (17) that the vertical equilibrium be stable is that,

1

2

∂2B2(0, z0)

∂z2
= B2

1 + 2B0B2 =
12π2a4h2M2(7z2

0 − a2)

(a2 + z2
0)

5
> 0, (38)
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which requires that z0 > a/
√

7.
In sum, diamagnetic levitation is possible provided condition (36) is satisfied.4 The

equilibrium radius is, of course, zero, and the equilibrium height z0 is given by eq. (35).
The equilibrium is stable against both radial and vertical perturbations provided a/

√
7 =

0.38a < z0 <
√

2/5a = 0.63a. Surprisingly, in many cases there are two stable equilibria,

one above a/
√

3 = 0.58a and one below.
We note that as the radius a of the magnetized disk goes to zero, the condition (37) for

radial stability can no longer be satisfied. That is, the field of the magnetization directly
under the diamagnetic sphere forces the sphere away from the axis of that magnetization;
the destabilizing effect can be overcome by the field of magnetization at nonzero radius,
which forces the sphere back towards the axis of the magnetized disk.

2.5 A Variant

In the present example, the external magnetic field was provided by a permanently mag-
netized disk which gives an upward force on a diamagnetic sphere above the disk; gravity
provides a downward force, and levitation/trapping is possible at the point where the total
force is zero. For large enough radius of the disk the horizontal force restores the diamagnetic
sphere to the field axis.

A trapping configuration in which the permanent magnetization lies in a plane has re-
cently been demonstrated in [19]. As shown below, two linear arrays of permanent magnetic
dipoles in the horizontal plane provide the external magnetic field.5

Trapping in the horizontal (x-y) plane is provided by the magnetic field, but the field
alone does not provide trapping in the vertical (z) direction, where a combination of gravity
and magnetism can give trapping. The latter is a bit subtle, in that the vertical equilibrium
point is far enough from the origin that a quadratic approximation to the energy U does not

4This condition cannot be satisfied for paramagnetic materials (μ > 1), in agreement with the general
conclusion of Appendix B.

5The magnetic field due to a long rong with transverse magnetization is deduced in [20].
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suffice. See the Supplementary Material, particularly sec. D, of [19] for details.

Appendix A: Earnshaw’s Theorem

In 1839, Earnshaw [21, 25, 26, 27, 28, 29, 30] noted the a stable equilibrium is impossible
for an electric charge q in an external electrostatic field Eext in an otherwise charge-free
region. Stability requires a restoring force for any small displacement of the charge from
equilibrium (where Eext = 0), i.e., ∇ · F = ∇ · qEext < 0, but in the otherwise charge-free
region ∇ · Eext = 0.

This argument appears to hold whether or not the external electric field is static, but a
time-dependent electric field would be associated with a magnetic field that exerts additional
force on the charge during small displacements from equilibrium, which might result in a
stable equilibrium. Hence, Earnshaw’s theorem is considered to apply only to static electric
fields.

This theorem is often expressed in terms of the electric scalar potential Vext, where the
static external electric field is related by Eext = −∇Vext, where in a charge-free region
∇2Vext = 0. Then, a requirement for a stable equilibrium is that ∇ · F = −q∇2Vext < 0,
which is not satisfied by Vext.

Clearly, Earnshaw’s argument also forbids a stable equilibrium for a magnetic charge
(monopole) p in an external, static magnetic field Bext in an otherwise magnetic-charge-free
region where ∇ · Bext = 0.

Appendix B: Braunbek’s Extension of Earnshaw’s

Theorem

In 1939, Braunbek [31] extended Earnshaw’s theorem to include electric and magnetic
dipoles, p and m respectively, as well as dielectric and diamagnetic objects.6

The torque p × Eext (or m × Bext) on an electric (or magnetic) dipole in an external
electric (or magnetic) field must be zero for equilibrium, so again the external field is zero
at a possible equilibrium point. The force on an electric dipole in a static electric field is
F = (p · ∇)Eext = ∇(p · Eext), so for small displacements of a dipole of fixed magnitude in
which no rotation occurs, ∇ · F = ∇2(p · Eext) = p · ∇2Eext = 0, and the equilibrium is not
stable.

We also consider a small object made of a linear dielectric material with (constant)
relative permittivity ε, for which its electric dipole momentum is p = (ε − 1)Eext/4π in
Gaussian units. Then, ∇·F = ∇2(p·Eext) = (ε−1)∇2E2

ext/4π. At a point where ∇2Vext = 0,
∇2E2

ext = 2(∂iEj)(∂iEj) − 2(Eext · ∇)∇2Vext ≥ 0, and stable equilibrium (∇ · F < 0) could
be possible if ε < 1. This is not the case for ordinary materials (and for static fields), so it
is generally considered that there is no stable equilibrium for a dielectric object in a static
electric field.7

6See also sec. 2 of [17].
7Artifical dielectrics [32] (now called metamaterials) exist with ε(ω) < 1, and more particularly with

ε(ω) < 0, but only for wave fields (angular frequency ω > 0). Such artificial dielectrics do not constitute an
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However, when we turn to magnetic materials of relative permeability μ, a requirement
for stability of a small object at a point where Bext = 0 is that ∇·F = (μ−1)∇2B2

ext/4π < 0,
which can be satisfied for magnetic fields with appropriate spatial variation and diamagnetic
materials (μ < 1), although not for paramagnetic/ferromagnetic materials (μ > 1).8

Appendix C: Stability Requirement Based on Energy

When a system can be described by a (potential) “energy” U(x), with “force” F = −∇U ,
an equilibrium point xe where F = 0 is stable against small displacements from equilibrium
if the energy U is a local minimum at xe.

9

A requirement for stability against small displacements in coordinate xi is that ∂2U(xe)/∂x2
i >

0. If ∇2U =
∑

i ∂
2U/∂x2

i = 0, then stability is not possible, which is Earnshaw’s theorem.
The requirement for stability against small displacements in any direction from an equi-

librium point is that the eigenvalues of the Jacobian matrix, Jij = ∂2U(xe)/∂xi∂xj, at the
equilibrium point all have positive real parts.

If the Jacobian matrix is diagonal (as in the present problem), its eigenvalues are the
diagonal elements ∂2U/∂x2

i , and the general criterion for stability reduces to the simpler case
that ∂2U(xe)/∂x2

i > 0 for each coordinate xi.
If the (symmetric) Jacobian matrix is not diagonal, there exists a coordinate rotation

about the point xe to a set of coordinates x′ for which the Jacobian matrix is diagonal at
the equilibrium point, with eigenvalues ∂2U(x′

e)/∂x′2
i that must all be positive for stability.

And, the eigenvalues of the Jacobian matrix are invariant under this rotation.

References

[1] W. Thomson, On the Forces Experienced by Small Spheres under Magnetic Influence;
and on Some of the Phenomena Presented by Diamagnetic Substances, Camb. Dublin
Math. J. 2, 230 (1847), http://kirkmcd.princeton.edu/examples/EM/thomson_cdmj_2_230_47.pdf

[2] W. Thomson, Remarks on the Forces experienced by inductively Magnetized Fer-
romagnetic or Diamagnetic Non-crystalline Substances, Phil. Mag. 37, 241 (1850),
http://kirkmcd.princeton.edu/examples/EM/thomson_pm_37_241_50.pdf

[3] W. Braunbek, Freies Schweben diamagnetischer Körper im Magnetfeld, Z. Phys. 112,
764 (1939), http://kirkmcd.princeton.edu/examples/EM/braunbek_zp_112_764_39.pdf

[4] A.H. Boerdijk, Technical Aspects of Levitation, Philips Res. Rep. 11, 45 (1956),
http://kirkmcd.princeton.edu/examples/EM/boerdijk_prr_11_45_56.pdf

[5] A.H. Boerdijk, Levitation by static magnetic fields, Philips Tech. Rev. 18, 125 (1957),
http://kirkmcd.princeton.edu/examples/EM/boerdijk_ptr_18_125_57.pdf

exception to the Braunbek/Earnshaw’s theorem for small homogeneous objects in static fields.
8Ferromagnetic materials can be levitated in a time-dependent magnetic field [24, 33, 34].
9This criterion for stability was given by Lagrange, and notably elaborated upon by Lyapunov [35].

8



[6] V. Arkadjev, Hovering of a Magnet over a Superconductor, J. Phys. (USSR) 9, 148
(1945), http://kirkmcd.princeton.edu/examples/EM/arkadjev_jpussr_9_148_45.pdf

[7] V. Arkadiev, A Floating Magnet, Nature 160, 30 (1947),
http://kirkmcd.princeton.edu/examples/EM/arkadiev_nature_160_30_47.pdf

[8] The LevitronTM is marketed by Fascinations Inc, 19224 Des Moines Way South, Suite
100, Seattle, WA 98148, http://www.levitron.com

[9] M. and K. Sherlock, The Hidden History of the Levitron,
http://www.amasci.com/maglev/lev/expose.html

[10] M.V. Berry, The LevitronTM: an adiabatic trap for spins, Proc. Roy. Soc. London A
452, 1207 (1996), http://kirkmcd.princeton.edu/examples/EM/berry_prsla_452_1207_96.pdf

[11] M.D. Simon, L.O. Heflinger and S.L. Ridgway, Spin stabilized magnetic levitation, Am.
J. Phys. 65, 286 (1997), http://www.physics.ucla.edu/marty/levitron/
http://kirkmcd.princeton.edu/examples/EM/simon_ajp_65_286_97.pdf

[12] K.T. McDonald, The LevitronTM (April 4, 1997),
http://kirkmcd.princeton.edu/examples/levitron.pdf

[13] M.V. Berry and A.K. Geim, Of flying frogs and levitrons, Eur. J. Phys. 18, 307 (1997),
http://kirkmcd.princeton.edu/examples/EM/berry_ejp_18_307_97.pdf

See also, http://www.phy.bris.ac.uk/people/Berry_mv/igberry.html

[14] A.K. Geim et al., Magnet levitation at your fingertips, Nature 400, 323 (1999),
http://kirkmcd.princeton.edu/examples/EM/geim_nature_400_323_99.pdf

[15] M.D. Simon and A.K. Geim, Diamagnetic levitation: Flying frogs and floating magnets,
J. Appl. Phys. 87, 6200 (2000),
http://kirkmcd.princeton.edu/examples/EM/simon_jap_87_6200_00.pdf

[16] E.C. Okress et al., Electromagnetic Levitation of Solid and Molten Metals , J. Appl.
Phys. 23, 545 (1952), http://kirkmcd.princeton.edu/examples/EM/okress_jap_23_545_52.pdf

[17] B.V. Jayawant, Electromagnetic suspension and levitation, Rep. Prog. Phys. 44, 411
(1981), http://kirkmcd.princeton.edu/examples/EM/jayawant_rpp_44_411_81.pdf

[18] E.H. Brandt, Levitation in Physics, Science 243, 349 (1989),
http://kirkmcd.princeton.edu/examples/EM/brandt_science_243_349_89.pdf

[19] O. Gunawan, Y. Virgus and K.-F. Tai, A parallel dipole line system, Appl. Phys. Lett.
106, 062407 (2015), http://kirkmcd.princeton.edu/examples/EM/gunawan_apl_106_062407_15.pdf

[20] K.T. McDonald, Long Rod with Uniform Magnetization Transverse to its Axis (Nov.
3, 1999), http://kirkmcd.princeton.edu/examples/magrod.pdf

9



[21] S. Earnshaw, On the Nature of the Molecular Forces which regulate the Constitution
of the Luminiferous Ether, Trans. Camb. Phil. Soc. 7, 97 (1842),
http://kirkmcd.princeton.edu/examples/EM/earnshaw_tcps_7_97_39.pdf

[22] F.J. Castro Paredes and K.T. McDonald, A Paradox Concerning the Energy of a Dipole
in a Uniform External Field (May 3, 2004),
http://kirkmcd.princeton.edu/examples/dipoleparadox.pdf

[23] M. Faraday, Experimental Researches in Electricity.—Twentieth Series, Phil. Trans.
Roy. Soc. London 136, 21 (1846),
http://kirkmcd.princeton.edu/examples/EM/faraday_ptrsl_136_21_46.pdf

[24] F.T. Holmes, Axial Magnetic Suspensions, Rev. Sci. Instr. 8, 444 (1937),
http://kirkmcd.princeton.edu/examples/EM/holmes_rsi_8_444_37.pdf

[25] W. Thomson, Demonstration of a Fundamental Proposition in the Mechanical Theory
of Electricity, Camb. Dublin Math. J. 4, 223 (1845),
http://kirkmcd.princeton.edu/examples/EM/thomson_cmj_4_223_45.pdf

[26] J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. I, Art. 116 (Claren-
don Press, 1904), http://kirkmcd.princeton.edu/examples/EM/maxwell_treatise_v1_04.pdf

[27] Lord Kelvin and P.G. Tait, Treatise on Natural Philosophy, Part II, p. 50 (Cambridge
U. Press, 1903), http://kirkmcd.princeton.edu/examples/mechanics/thomson_tait_treatise_v2.pdf

[28] L. Tonks, Notes on Earnshaw’s Theorem, Elec. Eng. 69, 118 (1940),
http://kirkmcd.princeton.edu/examples/EM/tonks_ee_59_118_40.pdf

[29] W.T. Scott, Who was Earnshaw? Am. J. Phys. 27, 418 (1959),
http://kirkmcd.princeton.edu/examples/EM/scott_ajp_27_418_59.pdf

[30] R. Bassani, Earnshaw (1805-1888) and Passive Magnetic Levitation, Meccanica 41, 375
(2006), http://kirkmcd.princeton.edu/examples/EM/bassani_meccanica_41_375_06.pdf

[31] W. Braunbek, Freischwebende Körper im elektrischen und magnetischen Feld, Z. Phys.
112, 753 (1939), http://kirkmcd.princeton.edu/examples/EM/braunbek_zp_112_753_39.pdf

[32] J. Brown, Artifical Dielectrics Having Refractive Indices Less Than Unity, Proc. IEE
100, 51 (1953), http://kirkmcd.princeton.edu/examples/EM/brown_piee_100_51_53.pdf

[33] W. Kemper, Schwebende Aufhängung durch elektromagnetische Kräfte: eine
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