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1 Problem

Consider a 2-dimensional simplification of the 3-dimensional phenomenon of Čerenkov ra-
diation of a charge particle that propagates down a waveguide that is filled with a linear,
isotropic dielectric of constant ε.

Two infinite, perfectly conducting parallel plates are separated by distance a. The gap
between them is filled with a gas of index of refraction n =

√
ε (which may be taken as

independent of frequency).
a) Give an expression for the guide wavelength λg and the phase velocity vp of the possible

guided waves in terms of the mode index m and the wavelength λ = c/nν in an unbounded
dielectric.

Suppose an infinite charged wire moves with velocity v > c/n perpendicular to its length,
and parallel to the conducting planes midway in the gap between them.

b) What waveguide modes are excited by the moving charged wire? Give a qualitative
description of the frequency spectrum of the resulting waves.

2 Solution

a) Waves cannot propagate between the plates with both the electric and magnetic fields
transverse to the (average) axis of propagation, since that region is, in effect, inside a sur-
rounding conducting surface. However, it is possible to have waves with either the electric
field (TE modes) or the magnetic field (TM) modes transverse to the direction of propaga-
tion. To calculate the guide wavelength and the phase velocity, it suffices to consider either
TE or TM modes.

Looking ahead to part b), we see that a line charge that moves down the guide perpen-
dicular to its length with velocity v = c/n emits Čerenkov radiation with a wedge angle
given by,

cos θ =
c

nv
, (1)

as shown below.
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The electric field lines that emerge from the line charge are all compressed into the two
sheets of the wedge, and point at angle θ to the x axis. The magnetic field, and not the
electric field, is transverse is this case.

We take the z axis as the direction of propagation, and the x axis as perpendicular to
the plates and x = 0 on the lower plate. We desire waves that have no dependence on y.
Then, the general form of a TM wave is,

Hx = 0, Hy = H0 cos
mπx

a
ei(kgz−ωt), Hz = 0, (2)

Dx =
ckg

ω
H0 cos

mπx

a
ei(kgz−ωt), Dy = 0, Dz =

icmπ

aω
H0 sin

mπx

a
ei(kgz−ωt), (3)

where m is the mode index, and the electric displacement field D has been obtained from
the magnetic field H via the Maxwell equation,

∇× H =
1

c

∂D

∂t
, (4)

which holds in the medium between the parallel plates. The magnetic field cannot vary as
sinmπx/a because then Dz = εEz would vary as cos mπx/a, which does not vanish at x = 0
and a as it must. It is noteworthy that the fields between the plates are not simply the limit
of those in a rectangular waveguide of width b in y as b → ∞. This is because TM modes in
a rectangular guide cannot have Dy = 0.

The magnetic field must also satisfy the wave equation in the dielectric medium, where
the wave velocity is c/n,

∇2H =
n2

c2

∂2H

∂t2
. (5)

Plugging eq. (2) into (5), we obtain the dispersion relation,

(mπ

a

)2

+ k2
g =

(mπ

a

)2

+

(
2π

λg

)2

=
(nω

c

)2

=

(
2π

λ

)2

, (6)

where λ is the wavelength inside the dielectric medium. Thus,

λg =
λ√

1 − (mλ/2a)2
. (7)

Waves can propagate only if λ < 2a/m.
It is helpful to have a geometric interpretation of these algebraic relations. While the

guided waves are not transverse to the z axis, they can be thought of as due to a pattern of
waves that are transverse to a ray that zig-zags down the guide, as shown in the figure.
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For the mode of index m, the distance along the ray between successive wavefronts is
mλ, and the distance along the z axis between successive wavefronts is mλg (and not λg).
To relate these two lengths geometrically, we note from the figure that the right triangle
whose hypotenuse is mλg is similar to the right triangle whose altitude is the gap height a.
The base of the latter triangle is mλg/2, being half the period of the zig-zag wave. Hence,

mλg

mλ
=

√
a2 + (mλg/2)2

a
, (8)

and again,

λg =
λ√

1 − (mλ/2a)2
. (9)

The phase velocity is therefore,

vp = νλg =
c

n

λg

λ
=

c

n

√
1 +

(
mλg

2a

)2

=
c

n

1√
1 − (mλ/2a)2

. (10)

For λ and λg small enough, the phase velocity can be less than c, and the longitudinal
electric field, Ez = Dz/ε, of the guided waves can accelerate charges that may be moving
down the guide with velocity v = vp. See, W.D. Kimura et al., Phys. Rev. Lett. 74, 546
(1995), http://kirkmcd.princeton.edu/examples/optics/kimura_prl_74_546_95.pdf

b) The Čerenkov radiation reflects off the conducting plates and sets up a criss-cross
pattern like that of a guided wave mode:

Recalling the figure on p. 2, we see that if this pattern corresponds to a mode of index m,
then the distance between successive wavefronts (of, say, the upper branch of the Čerenkov
wave) along the guide is mλg. The upper angle in the triangle with altitude a is the Čerenkov
angle θ. Hence,

mλg

2a
= tan θ =

√
1 − (c/nv)2

c/nv
=

√(nv

c

)2

− 1. (11)

The phase velocity of this mode follows from eqs. (10) and, (11) as

vp =
c

n

√
1 +

(
mλg

2a

)2

= v, (12)

for any index m. Hence, the Čerenkov effect can excite all waveguide modes.
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In principle, the Čerenkov wavefront is extremely narrow in time, so that its frequency
spectrum is essentially flat – although a discrete spectrum of multiples of the fundamental,

ν =
c

2an
√

1 − (c/nv)2
. (13)

In practice, the frequency spectrum extends up only to the characteristic resonant frequen-
cies of the dielectric medium, typically in the near ultraviolet, beyond which the dielectric
“constant” drops toward unity (or less than unity above the plasma frequency) and the
Čerenkov effect disappears. The thickness of the sheet of electric field in the Čerenkov
wedge is approximately the shortest wavelength for which the index of refraction still has
value n.

See sec. 5 of http://kirkmcd.princeton.edu/examples/weizsacker.pdf for a discussion of the
so-called formation length for Čerenkov radiation.
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