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1 Problem

Consider a point particle of mass m and electric charge q moving in the field of a point
electric dipole p = p ẑ. Find the orbits for which the motion is at a constant radius, and
comment on the stability of such motion.

2 Solution

We give two approaches, F = ma, and Lagrange. Aspects of this problem have been discussed
in [1].1,2

2.1 Newtonian Method

We consider a particle of mass m and electric charge q moving in the field of an electric
dipole p = p ẑ. The electric field (in Gaussian units) in polar coordinates (r, θ, φ) is,

E =
p

r3
(3 cos θ r̂ − ẑ) =

p

r3
(2 cos θ r̂ + sin θθ̂) =

p

r3
[3 cos θ sin θ ρ̂ + (3 cos2 θ − 1) ẑ], (1)

where ρ̂ is a unit vector perpendicular to the z axis. The torque N on the charge is,

N = r × qE = −pq

r2
(r̂ × ẑ). (2)

The torque vanishes only along the z axis, so only the z-component of angular momentum,
Lz, is conserved. Hence, the present problem has some features in common with the spherical
pendulum: the main class of orbits is that which lie in planes perpendicular to the z axis, but
there is a special case when Lz = 0, for which the motion is confined to a plane containing
the z-axis.

For an orbit to be in a plane perpendicular to the z axis, the field of the dipole must lie
in this plane also. This is not the case in general, but we see from the about expression for
E that at angles such that cos2 θ = 1/3 this condition is satisfied. The corresponding angles
are θ0 = 54.74◦ and 125.26◦. For positive p and q, only the case of θ0 = 125.26◦ corresponds
to an inward force, and so is the only possibility for an orbit.

To learn more, we examine F = ma for circular motion in an orbit of radius ρ0 at polar
angle θ0,

mv2
0

ρ0

= qEρ =

√
2pq

ρ3
0

. (3)

1In the quantum realm, bound states of a point electric dipole plus point electric charge exist, but only
for dipole moments larger than a critical value. For reviews, see [2, 3]. See also [4].

2The motion of an electric magnetic in the field of a magnetic dipole is discussed in [5].
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Hence,
mv2

0ρ
2
0 =

√
2pq. (4)

However, the conserved angular momentum about the z axis is Lz = mv0ρ0 =
√√

2pq/m

which is independent of ρ0. This peculiar result suggests that the orbits are unstable, in that
no particular value of the radius is determined by the constants of the motion.

This insight can be reinforced by consideration of the total energy,

U =
1

2
mv2 +

pq cos θ

r
=

1

2
mv2 +

pq cos θ sin θ

ρ
. (5)

But for the proposed orbit we find U = 0! That is, the motion is not bound, but would
wander from one radius to another under the slightest perturbation.

Experts will note that the special case of Lz = 0 deserves further attention. Here, we
should consider circular motion in a plane containing the z axis, for which θ can vary. For
motion on a circle of radius r0, the radial component of F = ma tells us that,

mv2

r0
= qEr =

2pq cos θ

r3
0

. (6)

The force is inward only for pq cos θ < 0, so the only hope for a stable motion is for π/2 ≤
θ ≤ π when p and q are positive. We see that the velocity v goes to zero at θ = π/2 (and
3π/2) so the motion lies along a half circle – no matter what the maximum velocity is!

Again an evaluation of total energy U shows that it is zero, and the motion is unstable.
There is no new form of matter to be expected from charged particles bound by dipoles!

2.2 Lagrange’s Method

The potential energy for the charge-plus-dipole system is,

V =
pq cos θ

r2
, (7)

and so the equations of motion are obtained via Lagrange’s equations as,

mr2 sin2 θφ̇ = Lz = constant, (8)

r̈ = rθ̇
2
+ r sin2 θφ̇

2
+

2pq cos θ

mr3
= rθ̇

2
+

L2
z

m2r3 sin2 θ
+

2pq cos θ

mr3
, (9)

d

dt
(r2θ̇) = r2 sin θ cos θφ̇

2
+

pq sin θ

mr2
=

L2
z cos θ

m2r2 sin3 θ
+

pq sin θ

mr2
, (10)

using conservation of angular momentum about the z axis to eliminate φ̇ from the 2nd and
3rd equations of motion.

We first seek an “orbit” for which ṙ = 0 = θ̇ but φ̇ �= 0 (i.e., Lz �= 0). Let r0 and θ0 be
the constant values of radius and polar angle on the orbit. Then, eq. (9) tells us that,

sin2 θ0 cos θ0 = − L2
z

2mpq
, (11)
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and eq. (10) implies,
sin4 θ0

cos θ0

= − L2
z

mpq
. (12)

These two relations combine to yield,

cos θ0 = ±
√

3

3
, so θ0 = 54.74◦ or 125.26◦. (13)

At angle θ0, the dipole field lines are perpendicular to the z axis, as can be seen from the
expression (1) for the field. This permits circular orbits in planes perpendicular to the z
axis. However, there is no preferred radius r0 for orbits of a given angular momentum Lz.
That is, any r0 is possible and the motion is unstable against a change in radius!

We can see this another way by considering the (conserved) total energy of the system,

U =
m

2
(ṙ2 + r2θ̇

2
+ r2 sin2 θφ̇

2
) +

pq cos θ

r2
. (14)

For the orbit with ṙ = 0 = θ̇ we then have,

U =
L2

z

2mr2
0 sin2 θ0

+
pq cos θ0

r2
0

, (15)

However, on comparing with eq. (9), we recognize that the total energy U vanishes for orbits
with ṙ = 0 = θ̇. That is, the system is not bound, and any slight perturbation in the energy
causes arbitrarily large change in the radius.

A mathematical curiosity is that the motion is stable against perturbation in the θ̂ di-
rection if Lz is not too large. To see this, consider motion in which ṙ = 0, but θ̇ �= 0 as well
as φ̇ �= 0. Then, we quickly find that,

θ̇
2

= − L2
z

m2r4
0 sin2 θ

− 2pq cos θ

mr4
0

. (16)

Since θ̇
2

must be positive definite, we see that for pq > 0 we can only have cos θ < 0. The
motion is oscillatory in θ between angles that satisfy,

sin2 θ cos θ = − L2
z

2mpq
. (17)

If,
L2

z

2mpq
<

2
√

3

9
= 0.3849, (18)

then there are two roots to the transcendental equation. The “central” angle of the motion
is θ0 = 125.26◦, as holds for the case that θ̇ = 0 always. (Motion about θ0 = 54.74◦ is
unstable for pq > 0.) As Lz → 0 the turning points approach θ = π/2 and π, and φ̇ → 0.
The motion consists of large oscillations in θ combined with a slow precession about the z
axis. This behavior is unusual in that there is no option for small oscillations in θ as φ̇ → 0.
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Although the particle cannot reach the z axis so long as Lz > 0, the motion for very small
Lz looks a lot like pendulum motion.

We also consider the case that Lz = 0 (⇒ φ̇ = 0) along with ṙ = 0. Then, one finds from
the 2nd equation of motion that,

θ̇
2

= −2pq cos θ

mr4
0

. (19)

For pq > 0 we can again only have cos θ < 0. The motion can reach the −z axis, passing
through it at maximum θ̇. The turning points of the orbit are at θ = π/2 and θ = 3π/2
(slightly stretching the meaning of the polar angle θ to accommodate the present case).
The motion is like that of a pendulum with angular amplitude π/2, and lies along a great
semicircle centered on the −z axis.

This motion could be considered stable against perturbation in the θ̂ or φ̂ directions.
Such perturbations would change angular momentum Lz from a zero to a nonzero value, and
we found above that for small Lz the motion is like a precessing pendulum.

But like the case of Lz > 0, the total energy U vanishes for this orbit, so it is unstable
against a radial (or energy) perturbation.
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