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1 Problem

Reconsider the classic example of the use of Maxwell’s displacement current to calculate
the magnetic field in the midplane of a capacitor with circular plates of radius R while
the capacitor is being charged by a time-dependent current /(). In particular, consider
the displacement current density, ¢¢0E/0t in MKSA units for vacuum between the plates,
to consist of a collection of small, close-packed “wires” that extend from one plate of the

capacitor to the other. Sum the magnetic field from this set of virtual wires to find the total
field.!

2 Solution

Aspects of this problem are considered in [1]-[28].
From the circular symmetry of the capacitor, and Ampere/Maxwell’s law that,

OE
V xB= Ho (Jconduction + EOE) ) (1)

in vacuum, we infer that the magnetic field is purely azimuthal, B = B(r, z)QAS, and indepen-
dent of azimuth in a cylindrical coordinate system (r, 6, z) whose axis is that of the capacitor
(and feed wires).

We suppose that the thickness of the capacitor is small compared to its radius R, so that
we may approximate the electric field as being uniform and in the z direction inside the
capacitor, and zero outside. Then, we have E = F z, and,

9__9 (r < R), 2)
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where the charge () on the capacitor is related to the charging current according to I =
dQ/dt. Hence, on the midplane of the capacitor eq. (1) becomes,

V xB= Ho Jdisplacement; (3)
where,
I z (r<r),
J displacement — R2 (4)
a 0 (r>R).

This is a quasi-static approximation that ignores the radiation of the accelerating charges in
the circuit.

'The “moral” of this problem is summed up in sec. A.7 below.



By considering a loop of radius r, centered on the origin and in the midplane of the
capacitor, the integral form of eq. (3) immediately tells us that,

By = Mol | 7w (7<), (5)
2m % (r > R).

Outside the capacitor, the magnetic field has the same form as that of a wire which carries
current /. Maxwell invented the concept of displacement current to insure that eq. (1) would
lead to such results.

The particular challenge of the present problem is to imagine that the displacement
current consists of small filaments, the sum of whose fields should give eq. (5).

The displacement current in a virtual wire of radius @ < R that runs between the plates

of the capacitor is,
2

a
2
Idisplacement =Ta Jdisplacement = Iﬁ . (6)

The magnetic field due to this virtual wire circulates around the wire, and has magnitude,

M()Idisplacement o M01a2 (7)
27s 21 R%s’

where s is the perpendicular distance from the observer to the virtual wire. Strictly speaking,

this form holds only for distance s small compared to the length of the virtual wire. However,

having accepted that the electric field is uniform within the capacitor, we can use form (7)

without further error.

We now must add up the contributions from all the virtual wires to find the total magnetic
field at an arbitrary point in the midplane. Because of the azimuthal symmetry, we can take
this point to be (r,0,0), which lies on the z axis, without loss of generality. We expect the
total magnetic at this point to be along the y axis, so we sum up only the y components of
the fields (7) of the virtual wires.

The center of an arbitrary virtual wire is written as (1/,6,0). The distance s from the
observation point to the virtual wire is,

B virtual —

§= \/7”2 + 172 — 2rr' cos 0, (8)
as shown in the figure. The unit vector along the direction of s has components,

(r —r'cosf,—r"sin0)

S =

: (9)

so that a unit vector perpendicular to s, which is in the direction of the magnetic field of
the virtual wire, has components,

S

. r'sinf,r —1r'cosf,0
Bvirtual - ( s ) ; (10)

Combining egs. (7) and (10), the y-component of the magnetic field of the virtual wire is,

pola® r—1'cos pola*(r — 1" cos0)
2m R?s s ©2wR2(r2 + 1% — 211’ cos )

(11)

B virtual,y —

2



%%

virtual wire

Byvirtual

We integrate over the area of the midplane, noting that an area element r’'dr’df contains
r'dr'df/ma® virtual wires of radius a,

R 2 /
r'do r—1'cosf
Br0,0)= [ d' | 2B v dr’ / o .
(r,0,0) /0 " /0 ma? tualy(5) 27T2R2/ r2 4+ 12 — 2rr cos O

(12)
The @ integral must be evaluated separately for the cases r > r’ and r < /. For r > r’ we
have,

2 — 1 cost 1 /2" 1 —Zcosd 2
/ do— T/2 - COS/ - _/ do oo == (r>1"), (13)
0 r24+r'* —2rr'cos r Jy 1+ % —2%cosf r

using Dwight 859.100, 859.101, and 859.122. Thus, for an observer outside the capacitor
plates, we find,

R
Ho I I MOI
B(r,0,0 dr' = — >R 14
r0.0) = Lo [Trar < B0 o) (1)

in agreement with eq. (5).

For r < r', the angular integral is,
2m / 2m T
r — 1’ cosf 1 - —cosf

db = — b - =0 r<r). 15
/0 72+ 1'% — 2r1’ cos 0 7"’/0 1+ L3 — 2L cosf ( ) (15)

That is, there is no contribution to the total magnetic field at radius r due to the virtual
wires at radius 7’ > r, as could be anticipated from Ampere’s law. Hence, for an observer at
r < R we integrate over the virtual wires with " < r to find,

I T I
B(r,0,0) = 10 /r’dr’: Foll (4 < R), (16)
0

T R%r 21 R?

which is also in agreement with eq. (5).



A Appendix. The Effects of Currents in the Capacitor
Plates

Since the charge on the capacitor plates is time dependent, there must be currents flowing

on those plates. What contribution, if any, do these “radial” currents make to the magnetic
field?

A.1 Magnetic Field in the Plane of the Capacitor, but Outside It

One way to address this question is via Ampere’s law, as illustrated in the figure below.
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Ampere’s law in integral form states that the integral of the tangential component of
the magnetic field around a loop is equal to (p, times) the current through the loop. To
determine the current “through the loop”, we consider a surface that is bounded by the loop
and use the current that crosses that surface.

The left figure above shows a section through a capacitor with circular plates of radius R
that is fed by a time-dependent current /(t). We desire the magnetic field at radius a > R on
a circular loop located in the midplane of the capacitor. We first take the Amperian surface
to be a kind of cylindrical “cup” such that the base of the cup is pierced by the righthand
lead wire of the capacitor (left figure). Then the only current through the surface is the

current [ in the wire. The tangential component B(a) of the magnetic field at radius a is
independent of the position around the loop, so,

Lry,n 2

%B(a,t) dl = 2maB(a,t) = pyl(t), (17)
B(a,t) = “;frg) : (18)

as noted earlier in eq. (5).

If we choose the Amperian surface bounded by the loop of radius a to be the disc in the
plane of the loop (second figure), then no “real” (i.e., conduction) current passes through the
loop. However, since there is a time-dependent electric field at the disc, there is a non-zero
displacement current across it, of, magnitude

OE d Q dQ
Liispi(t) = /Jdispl -dArea = /eoa -dArea = EO%WR%OWRQ == I(t), (19)



recalling eq. (2) for the electric field in a capacitor. Hence, use of the Amperian surface in
the middle figure also leads to eq. (18) for the magnetic field at radius a.

We could also choose the Amperian surface to be that shown in the third figure on p. 4,
which consists of the outer portion of the disc in the plane of the loop, plus a “cup” of radius
ro whose bottom is pierced by the righthand lead of the capacitor. In this case, there are 3
contributions to the current through the surface:

1. The displacement current for radii r > ry,

0K d @ 2 2 o
Liispi(7 > 10, 1) = / €05y dArea = EO%WR%EO’/T(R —r5)=1(1- T2 I(t). (20)

r>70

2. The radial current I,(rg,t) at radius ro on the capacitor plate.
3. The current /(t) in the lead of the capacitor.

For Ampere’s law to calculate the same magnetic field no matter which Amperian surface is
used, Maxwell noted that the total current across any surface that is bounded by the same
loop must be the same. Applying this result to the first and third surfaces, we have,

I(t) = Idispl(/r > To,t) — Ir(To,t) -+ I(t), (21)

where we use a minus sign for the term I,.(r¢, t) since the radial current crosses the Amperian
surface in the opposite sense to that of the current I(t) in the lead wire. Thus, we conclude
that,

Ir(To,t) = Idispl(T > To,t) = ( — ﬁ) I(t) (22)

When we consider the Amperian surface in the fourth part of the figure on p. 4, we see
that,

I(t) = laispi(r < 70,t) + I (70,1), (23)
and we infer that,
ol ra
I(ro, t) = I(t) — Laispi(r < 1o, t) = I(t) — Wf(t) =\ I(t), (24)

as found in eq. (22).

A.2 Direct Calculation of the Radial Current

We digress slightly to verify eq. (24) for the radial current by an approach that does not
involve the displacement current.

Consider a ring of inner radius 7 and outer radius r + dr < R on the righthand capacitor
plate of the figure on p. 4. The area of this ring is dA = 271 dr. Since the charge Q(t) on
the plate is uniformly distributed (in our approximation), the charge 6Q) on the ring is,

dA  2rQ)

>



Conservation of charge tells us that the time rate of change of charge on the ring is equal to
the difference of the radial currents at r and r + dr,

do
I.(r+drt)— I(r,t) = d—? , (26)
noting that the radial current is inwards on the righthand capacitor plate. Hence,
L.(r, 2r drd 21(t)d
d(rt)dr—TT—Q:—ﬁ (27)

dr OR2 dt ro
using eq. (25), and noting that when 7(¢) > 0 the charge on the righthand plate is decreasing

with time. Thus,
dl,(r,t) 2r1(t)

dr R2 (28)
which integrates to,
r?1(t)
I(r;t)=A— T (29)

Since the radial current vanishes when r = R we see that A = I, and that,

L(r,t) = (1 - ;—22) I(t), (30)

as found previously (for r = rg).?

A.3 Magnetic Field Inside the Capacitor

We seek the value of the magnetic field at a radius a < R inside the capacitor, as shown in
the figure below.
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2If the frequency of the sinusoidal current is high enough, the current flows only on the exterior of the
conductors. In this case we can speak of the radial current I, oy (r) that flows outwards from the lead wire
on the outside of a capacitor plate, and the current I, i, (r) that flows inwards from the outer edge onto
the inside of the plate. If we continue to ignore fringe-field effects then there is no charge accumulation
on the outside of the plate, while the charge distribution on the inside of the plate is uniform. Therefore,
I, out(r) = I (no charge accumulation on the outside of the plate). The inside current has the general form
of eq. (29) (so as to provide a uniform charge accumulation on the inside of the plate), while at the outer
rim of the plate we have I i (r) = A — I = —I, out (R) = —I. Hence, we have A = 0, and,

7,2

7,2
Ir,out (T) = I; Ir,in (T) = _Iﬁ 5 Ir,total(r) =1 (1 - ﬁ) . (31)

The magnetic field due to the currents on the (thin) capacitor plates is that due to I, tota1(r), and hence is
the same as that deduced by our other approaches.



We calculate the field three ways, using the three Amperian surfaces illustrated above.

First, we take the Amperian surface to be the disc bounded by the loop. Then, no con-
duction current passes through the surface, and we consider only the displacement current.
Ampere’s law tells us that,

a2

%B(a,t) dl = 2maB(a,t) = pioLihrough = Holaispi(r < a,t) = uol(t)ﬁ. (32)
Thus,
a
B = gl (t) ——

in agreement with eq. (5).
If we wish to avoid use of the displacement current, we can use the Amperian surface
shown in the middle of the figure on p. 6, for which Ampere’s law becomes,

a’ a’
2raB(a,t) = polenrougn = polL(t) — Ir(a,t)] = po I (t) {1 - (1 - ﬁ)] = Mol(t)ﬁ> (34)
so the magnetic field is again given by eq. (33).
We could avoid use of the radial current by considering the Amperian surface in the right
figure on p. 6. In this case Ampere’s law tells us that,

a? a?
27aB(a,t) = pioLomongn = Hol1(6) — Lo > a,8)] = oI (1 [1 - (1 - —)} — ol (1)

R2
(35)
and again the magnetic field is given by eq. (33).

The magnetic field eq.(33) inside the capacitor is not equal to the magnetic field that
exists at the same radius a about a wire when no capacitor is present. However, we cannot
give a unique answer to the question as to why the field is different.

We can say that the field is due to the current in the wire plus the radial current in the
capacitor plates. Or, we can say that the field is due to the displacement current at radius
r < a. Or, we can say that the field is due to the current in the wire plus (actually minus)
the displacement current at radius r > a.3

A.4 Magnetic Field Outside the Capacitor at a < R

We seek the value of the magnetic field at a radius a < R, but outside the capacitor, as
shown in the figure below.

loop of radius a / Amperian surface _
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3The fact that multiple approaches to calculating the magnetic field give the same answer is a strength
rather than a defect of the approach of Ampere and Maxwell, and should not be taken as a sign that the
displacement current is fictitious.




We calculate the field three ways, using the three Amperian surfaces illustrated above.

First, we take the Amperian surface to be the disc bounded by the loop. Then, the only
current through the surface is the current in the wire lead. Hence, Ampere’s law tells us
that,

f{B(a,t) dl =2mwaB(a,t) = pylihrough = ol (). (36)
Thus,
I(t)
B(a,t) = pg——= 37
(a> ) MO 27ra ’ ( )

in agreement with eq. (5).
But, we can avoid direct use of the current in the capacitor lead by either of the second or
third Amperian surfaces in the figure on p. 7. For the second surface, Ampere’s law becomes,

a? a?
2raB(a,t) = folinrough = Hollaispi(7 < a,t) + I (a,t)] = pol(t) {ﬁ + (1 - ﬁ)]

= Hol(t), (38)

so the magnetic field is again given by eq. (37).
We could avoid use of the radial current by considering the Amperian surface in the right
figure on p. 7. In this case, Ampere’s law tells us that,

2raB(a,t) = polinroush = Holaispi(r < Ry t) = oI (t), (39)

and again the magnetic field is given by eq. (37).

A.5 Comments

Use of the third figure on p. 7 permits us to calculate the magnetic field anywhere around
the capacitor without direct use of any conduction current. However, this should not be
construed as evidence that time-dependent magnetic fields are only due to displacement
currents, since we can equally well perform calculations that do not use the displacement
currents. Rather, we follow Maxwell in noting that both conduction and displacement cur-
rents exist, and either or both types of currents may be useful in analyzing particular physical
situations.

The calculations in secs. A.1 and A.3-4 have all been based on Ampere’s law, which gives
quick results in situation with high symmetry. This approach is not, however, practical in
general. An alternative approach is to use what is sometimes called the retarded Biot-Savart
law (see, for example, [29]),

B(x,1) = Ho / Jeond(X',t' =t —5/c) x 8 Px s Mo /Jcond(xl7t/ =t—s/c) X $§ P,

4 52 4rre S
(40)

where s = x — x/, s = |s|, § = s/s, and J.onq is the conduction current.*

4This prescription is not evidence that the displacement current is nonexistent, but only that there are
methods of calculation that don’t use it.



A.6 Magnetic Field Inside a Narrow-Gap Capacitor Via the Biot-
Savart Law

In the present example of a capacitor with a low-frequency current, retardation and time
variation of the current can be ignored. In this case eq. (40) reduces to the familiar form of
the Biot-Savart law. A detailed calculation via the Biot Savart law of the magnetic field in
the gap between the capacitor plates requires use of the radial currents as well as the currents
in the lead wires. The approximation of the present problem is that the electric field inside
the capacitor is uniform, which corresponds to the gap between the plates being much smaller
than their radius. In this approximation, the contributions to the magnetic fields from the
radial currents in the two capacitor plates cancel for points outside the capacitor and the
magnetic field is the same as that due to the wire leads, which value is unaffected by the
small gap in the leads at the location of the capacitor.

The calculation of the field at a point inside a narrow-gap capacitor via the Bio-Savart
law can be made as follows. The lead wires run along the z axis, and the capacitor plates
lie in the planes z = 4€ where ¢ < R. We desire the field at the point (z,y,2) = (a,0,0)
where a < R. Then the Biot-Savart calculation is,

ZXS [l I, rxt

dA
53 4 27r e T3

B(a,0,0) = @/ I dz , (41)
leads

4 plates

where s = (a, 0, 2) is the vector distance between the observation point and a point on the
lead wire, t is the vector distance between the observation point and a point on the capacitor
plates, and [,r/27r is the radial current density on the plates, where I, is given by eq. (30).

We first evaluate the integral over the leads. Here, z x s = ay, and s = (a? + 22)'/2.
Thus,
to . [T dz ol y < 6) tol .
Bieaas(a,0,0) = 2041 - 1= &) x by 42
teads(, 0, 0) '’ y/ﬁ (a®+ 2232 2ma a ora” (42)

just as if the capacitor wasn’t there.

In the integral over the plates, the main contribution comes from points (r, 6, z) ~
(a + dx,dy + €) on the plate that are very close to the observation point, where |dz| < e,
|0y| < €. For this region the vector distance is approximately parallel to the z axis, and we
use the approximation t = +ez. Also, = X in this region, so r X t & +ey. Since r = a in
this region, we have I,(r) = I.(a) = FI(1 — a*/R?).

We set up a new, polar coordinate system (p, ¢) in the x-y plane, centered on the point
(z,y) = (a,0). Then, t = (¢ + p?)'/2. The integrand is now independent of angle ¢, so we
write the area element as dArea = 27p dp. The magnetic field due to the currents in the
plates is therefore,

po I a’ A/oo 2p dp
Boie(a,0,0) ~ —2H0 = (1 _ & __2pap
plates(, 0, 0) 4m 2ma ( RQ) ey o (€24 p2)3/2
poel a*\ .2 ol a\ .
— l—-=ly—=——""(1—-—=)Yy. 43
dra ( RQ)ye 27a 7)Y (43)

The total magnetic field at the observation point inside the capacitor is the sum of

l




eqs. (42) and (43),

I 2 I
B(a,o,O)z’i{l—(l—a—)}yzw.\?, (44)

2ma

as found previously via Ampere’s law.

A.7 A Final Comment

Ampere’s law and the Biot-Savart law represent somewhat different ways of thinking about
the origin of the magnetic fields. In both views we say that the magnetic field is due to
currents. Ampere’s law (as stated by Maxwell) implements the idea that the magnetic field
at a point can be determined only from knowledge of the total currents (conduction plus
displacement) on some surface that encloses that point. In contrast, the Bio-Savart law
requires knowledge only of the conduction currents, but throughout all space.

Thus, Ampere’s law is more economical in its requirements for information about the
physical system. But, as Maxwell was the first to note, the more elegant approach of Ampere
requires a more sophisticated conception of the meaning of the term “current”. The reward
for mastery of these enlargements of the notion of “current” was our understanding of elec-
tromagnetic wave phenomena.
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