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Abstract

The energy and momentum densities of the fields of a free electron in a plane
electromagnetic wave include interference terms that are the classical version of the
“dressing” of the electron the arises in a quantum analysis. The transverse mechanical
momentum of the oscillating electron is balanced by the field momentum resulting
from the interference between the driving wave and the static part of the electron’s
field. The interference between the wave and the oscillating part of the electron’s field
leads to a longitudinal field momentum and a negative field energy that compensate
for the longitudinal momentum and kinetic energy of the electron. The interference
terms are dominated by the near zone, so that as the wave passes the electron by the
latter reverts to its energy and momentum prior to the arrival of the wave.

1 Introduction

The behavior of a free electron in a electromagnetic wave is one of the most commonly
discussed topics in classical electromagnetism. Yet, several basic issues remain to be clar-
ified. These relate to the question: to what extent can net energy be transferred from an
electromagnetic pulse (such as that of a laser) in vacuum to a free electron?

These issues are made more complex by quantum considerations, including the role of
the “quasimomentum” and the “effective mass” of an electron that is “dressed” by an elec-
tromagnetic wave [1].

As a small step towards understanding of the larger issues, we consider a simpler question
here. The response of a free electron to a plane electromagnetic wave is oscillatory motion in
the plane perpendicular to the direction of the wave, in the first approximation. Thus, the
electron has momentum transverse to the direction of the wave. However, the wave contains
momentum only in its direction, and the radiated wave contains no net momentum (in the
nonrelativistic limit). How is momentum conserved in this process?

The general sense of the answer has been given by Poynting [2], who noted that an
electromagnetic field can be said to contain a flux of energy (energy per unit area per unit
time) given by

S =
c

4π
E× B, (1)

in Gaussian units, where E is the electric field, B is the magnetic field (taken to be in vacuum
throughout this paper) and c is the speed of light.
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J.J. Thomson [3, 4, 5] (and later Poincaré [6]) noted that this flow of energy can also be
associated with a momentum density given by

Pfield =
S

c2
=

E ×B

4πc
, (2)

Hence, in the case of a free electron in a plane electromagnetic wave we are led to seek an
electromagnetic field momentum that is equal and opposite to the mechanical momentum of
the electron.

In this paper we demonstrate that indeed the mechanical momentum of the oscillating
electron is balanced by the field momentum in the interference term between the incident
wave and the static field of the electron. We are left with some subtleties when we consider
the interference between the incident wave and the oscillating field of the electron.

2 Generalities

2.1 Motion of an Electron in a Plane Wave

We consider a plane electromagnetic wave that propagates in the +z direction of a rectan-
gular coordinate system. A fairly general form of this wave is

Ewave = Ex cos(kz − ωt) x̂− Ey sin(kz − ωt) ŷ,

Bwave = Ey sin(kz − ωt) x̂ + Ex cos(kz − ωt) ŷ, (3)

where ω = kc is the angular frequency of the wave, k = 2π/λ is the wave number and x̂ is a
unit vector in the x direction, etc. When either Ex or Ey is zero we have a linearly polarized
wave, while for Ex = ±Ey we have circular polarization.

A free electron of mass m oscillates in this field such that its average position is at the
origin. This simple statement hides the subtlety that our frame of reference is the average
rest frame of the electron when inside the wave, and is not the lab frame of an electron that
is initially at rest, but which is overtaken by a wave[7, 8, 9]. If the velocity of the oscillating
electron is small, we can ignore the v/c× B force and take the motion to be entirely in the
plane z = 0. Then, (also ignoring radiation damping) the equation of motion of the electron
is

m ẍ = eEwave(0, t) = e(Ex cosωt x̂ + Ey sinωt) ŷ. (4)

Using eq. (3) we find the position of the electron to be

x = − e

mω2
(Ex cos ωt x̂ + Ey sin ωt) ŷ, (5)

and the mechanical momentum of the electron is

pmech = m ẋ =
e

ω
(Ex sinωt x̂ −Ey cos ωt) ŷ. (6)

The root-mean-square (rms) velocity of the electron is

vrms =
√
〈ẋ2 + ẏ2〉 =

e

mω

√
E2

x + E2
y

2
=

eErms

mωc
c. (7)
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The condition that the v/c × B force be small is then

η ≡ eErms

mωc
� 1, (8)

where the dimensionless measure of field strength, η, is a Lorentz invariant. Similarly, the
rms departure of the electron from the origin is

xrms =
eErms

mω2
=

ηλ

2π
. (9)

Thus, condition (8) also insures that the extent of the motion of the electron is small com-
pared to a wavelength, and so we may use the dipole approximation when considering the
fields of the oscillating electron.

In the weak-field approximation, we can now use (6) for the velocity to evaluate the
second term of the Lorentz force:

e
v

c
× B =

e2(E2
x −E2

y)

2mωc
sin 2ωt ẑ. (10)

This term vanishes for circular polarization, in which case the motion is wholly in the trans-
verse plane. However, for linear polarization the v/c×B force leads to oscillations along the
z axis at frequency 2ω, as first analyzed in general by Landau [10]. For polarization along
the x-axis, the x-z motion has the form of a “figure 8”, which for weak fields (η � 1) is
described by

x = − eEx

mω2
cos ωt, z = − e2E2

x

8m2ω3c
sin 2ωt. (11)

If the electron had been at rest before the arrival of the plane wave, then inside the wave
it would move with an average drift velocity given by

vz =
η2/2

1 + η2/2
c, (12)

along the direction of the wave vector, as first deduced by McMillan [11]. In the present
paper we work in the frame in which the electron has no average velocity along the z axis.
Therefore, prior to its encounter with the plane wave the electron had been moving in the
negative z direction with speed given by (12).

2.2 Field Momentum

The fields associated with the electron can be regarded as the superposition of those of
an electron at rest at the origin plus those of a dipole consisting of the actual oscillating
electron and a positron at rest at the origin. Thus, we can write the electric field of the
electron as Estatic + Eosc and the magnetic field as Bosc, where the oscillating fields have the
pure frequency ω in the low-velocity limit.

The entire electromagnetic momentum density can then be written

Pfield =
(Ewave + Estatic + Eosc) × (Bwave + Bosc)

4πc
. (13)
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However, in seeking the field momentum that opposes the mechanical momentum of the
electron, we should not include either of the self-momenta Ewave ×Bwave or (Estatic +Eosc)×
Bosc. The former is independent of the electron, while the latter can be considered as a part
of the mechanical momentum of the electron according to the concept of “renormalization”.

We therefore restrict our attention to the interaction field momentum

Pint = Pwave,static + Pwave,osc, (14)

where

Pwave,static =
Estatic ×Bwave

4πc
. (15)

and

Pwave,osc =
Ewave × Bosc + Eosc × Bwave

4πc
. (16)

We recall from eqs. (6) and (11) that the transverse mechanical momentum of the oscil-
lating electron has pure frequency ω. Since the wave and the oscillating part of the electron’s
field each have frequency ω, the term Pwave,osc contains harmonic functions of ω2, which can
be resolved into a static term plus ones in frequency 2ω. Hence, we should not expect this
term to cancel the mechanical momentum. Rather, we look to the term Pwave,static, since this
has pure frequency ω.

3 The Momentum Pwave,static

The static field of the electron at the origin is, in rectangular coordinates,

Estatic =
e

r3
(x x̂ + y ŷ + z ẑ), (17)

where r is the distance from the origin to the point of observation. Combing this with eq. (3)
we have

Pwave,static =
e

4πcr3
{−zEx cos(kz − ωt) x̂ + zEy sin(kz − ωt) ŷ

+[xEx cos(kz − ωt) − yEy cos(kz − ωt)] ẑ}. (18)

When we integrate this over all space to find the total field momentum, the terms in ẑ vanish
as they are odd in either x or y. Likewise, after expanding the cosine and sine of kz − ωt,
the terms proportional to z cos kz vanish on integration. The remaining terms are thus

pwave,static =

∫
Pwave,static

=
e

4πc
(−Ex sinωt x̂ + Ey cos ωt ŷ)

∫
z sin kz

r3
dVol

=
e

ω
(−Ex sinωt x̂ + Ey cos ωt ŷ) = −pmech, (19)

after an elementary volume integration.
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It is noteworthy that the integration is independent of any hypothesis as to the size of a
classical electron. Indeed, the integrand of (19) can be expressed as cos θ sin(kr cos θ)/r2 via
the substitution z = r cos θ. Hence, the integral over a spherical shell is independent of r for
kr � 1, and significant contributions to the integral occur for radii up to one wavelength
of the electromagnetic wave. This contrasts with the self-momentum density of the electron
which is formally divergent; if the integration is cut off at a minimum radius (the classical
electron radius), the dominant contribution occurs within twice that radius.

Thus, we have demonstrated the principal result of this paper.

4 The Momentum Pwave,osc

Several subtleties in the argument appear when we consider the other interference term in
the momentum density (14). For this, we must first display the electromagnetic fields of an
oscillating electron.

4.1 The Fields Eosc and Bosc

Since we restrict our attention to an electron that oscillates with amplitude much less than
a wavelength of the driving wave, and the electron attains velocities that are much less than
the speed of light, it is sufficient to use the dipole approximation to the fields of the electron.
While these fields are well known, they are typically presented in complex notation, of which
only the real part has physical significance. This notation is very useful for discussions in
which only time-averaged behavior is of interest. However, we wish to consider the details of
momentum balance at an arbitrary moment, and it is preferable to use purely real notation.

We begin by noting that the retarded vector potential of the oscillating electron at a
point r at time t can be written

Aosc(r, t) =
e

c

ẋ(t′ = t − r/c)

r
(20)

= − e2

mωcr
[Ex sin(kr − ωt) x̂ + Ey cos(kr − ωt) ŷ],

using eq. (5) for the motion x of the electron. The oscillating part of the scalar potential is
obtained by integration of the Lorenz gauge condition:

∇ · Aosc +
1

c

∂φosc

∂t
= 0. (21)

We find

φosc = − e2

mω2

{
Ex

[
kx

r2
sin(kr − ωt) +

x

r3
cos(kr − ωt)

]

+Ey

[
ky

r2
cos(kr − ωt) − y

r3
sin(kr − ωt)

]}
. (22)

The constant static potential is omitted in the above.
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The scalar potential could also be deduced from the retarded potential of a moving charge.
Equation (22) results on expanding the retarded distance to first order in the field strength
of the plane wave.

The electric and magnetic fields are, of course, found from the potentials via

B = ∇× A and E = −∇φ − 1

c

∂A

∂t
. (23)

The lengthy expressions for the rectangular components of the fields are

Bosc,x = −e2Ey

mω2

[
k2z

r2
sin(kr − ωt) +

kz

r3
cos(kr − ωt)

]
,

Bosc,y = −e2Ex

mω2

[
k2z

r2
cos(kr − ωt)− kz

r3
sin(kr − ωt)

]
,

Bosc,z =
e2Ex

mω2

[
k2y

r2
cos(kr − ωt) − ky

r3
sin(kr − ωt)

]
(24)

+
e2Ey

mω2

[
k2x

r2
sin(kr − ωt) +

kx

r3
cos(kr − ωt)

]
,

and

Eosc,x = −e2Ex

mω2

[(3kx2

r4
− k

r2

)
sin(kr − ωt) +

(
k2

r
− k2x2

r3
+

3x2

r5
− 1

r3

)
cos(kr − ωt)

]

−e2Ey

mω2

[3kxy

r4
cos(kr − ωt) +

(
k2xy

r3
− 3xy

r5

)
sin(kr − ωt)

]
,

Eosc,y = −e2Ex

mω2

[3kxy

r4
sin(kr − ωt) −

(
k2xy

r3
− 3xy

r5

)
cos(kr − ωt)

]
(25)

−e2Ey

mω2

[(3ky2

r4
− k

r2

)
cos(kr − ωt) −

(
k2

r
− k2y2

r3
+

3y2

r5
− 1

r3

)
sin(kr − ωt)

]
,

Eosc,z = −e2Ex

mω2

[3kxz

r4
sin(kr − ωt) −

(
k2xz

r3
− 3xz

r5

)
cos(kr − ωt)

]

−e2Ey

mω2

[3kyz

r4
cos(kr − ωt) +

(
k2yz

r3
− 3yz

r5

)
sin(kr − ωt)

]
.

These expressions can also be deduced from the Liénard-Wiechert forms for the fields of an
accelerated charge, keeping terms only to first order in the strength of the plane wave.

4.2 Components of Pwave,osc

Since the wave fields have no z component, the x component of Pwave,osc is given by

Pwave,osc,x =
Ewave,yBosc,z − Eosc,zBwave,y

4πc
. (26)

From eqs. (24) and (25) we see that both Bosc,z and Eosc,z are odd in either x or y. Therefore,
the volume integral of Pwave,osc,x vanishes, and we do not consider it further. Likewise,
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Pwave,osc,y vanishes on integration. This confirms the claim made at the end of sec. II that
the interference term Pwave,osc is not relevant to the balance of transverse momentum between
the electron and the fields.

However, the z component of Pwave,osc does not vanish on integration, and requires further
discussion. As the details include some surprises (to the authors), we present them at length.

Pwave,osc,z =

Ew,xBo,y − Ew,yBo,x + Eo,xBw,y − Eo,yBw,x

4πc
=

− e2E2
x cos(kz − wt)

4πmω2c

[k2z

r2
cos(kr − ωt) − kz

r3
sin(kr − ωt)

]

− e2E2
y sin(kz − wt)

4πmω2c

[k2z

r2
sin(kr − ωt) +

kz

r3
cos(kr − ωt)

]

− e2E2
x cos(kz − wt)

4πmω2c

[(3kx2

r4
− k

r2

)
sin(kr − ωt) +

(
k2

r
− k2x2

r3
+

3x2

r5
− 1

r3

)
cos(kr − ωt)

]

− e2ExEy cos(kz − wt)

4πmω2c

[3kxy

r4
cos(kr − ωt) +

(
k2xy

r3
− 3xy

r5

)
sin(kr − ωt)

]
(27)

− e2ExEy sin(kz − wt)

4πmω2c

[
−3kxy

r4
sin(kr − ωt) +

(
k2xy

r3
− 3xy

r5

)
cos(kr − ωt)

]

+
e2E2

y sin(kz − wt)

4πmω2c

[(3ky2

r4
− k

r2

)
cos(kr − ωt) −

(
k2

r
− k2y2

r3
+

3y2

r5
− 1

r3

)
sin(kr − ωt)

]
.

The terms of Pwave,osc,z that are proportional to ExEy are odd on both x and y, and so
will vanish on integration.

We now consider the implications of eq. (27) separately for waves of circular and linear
polarization.

4.3 Circular Polarization

For a circularly polarized wave, we have E2
x = E2

y . Consequently, the dimensionless measure
of field strength is η = eEx/mωc = eEy/mωc, according to (8). The prefactors e2E2

x/4πmω2c
and e2E2

y/4πmω2c can therefore both be written η2mc/4π, and have dimensions of momen-
tum.

The terms of eq. (27) in E2
x and E2

y can be combined in pairs via the identities

cos(kz − ωt) cos(kr − ωt) + sin(kz − ωt) sin(kr − ωt)

= cos kz cos kr + sin kz sin kr, (28)

and

sin(kz − ωt) cos(kr − ωt) − cos(kz − ωt) sin(kr − ωt)

= sin kz cos kr − cos kz sin kr. (29)

A detail: the second term of eq. (27) in E2
x contains factors of x2, while second term of in

E2
y contains factors of y2. But during integration, we can replace y2 by x2, after which the

terms can be combined via (28-29).
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We see already that the volume integral of Pwave,osc,z will contain no time dependence!
On integration, terms such as f(x, r) sin kz and g(x, r)z cos kz that are odd in z will

vanish. The integrated field momentum is thus,

pwave,osc,z =

∫
V

Pwave,osc,z = −η2mc

4π
I1 = −4

3
η2mc, (30)

where I1 is the volume integral whose integrand is

k2z

r2
sin kz sin kr +

kz

r3
sin kz cos kr +

(
3kx2

r4
− k

r2

)
cos kz sin kr

+

(
k2

r
− k2y2

r3
+

3y2

r5
− 1

r3

)
cos kz cos kr. (31)

We return to the significance of eq. (30) after describing the evaluation of integral I1.
As seen from eq. (30), the integral I1 must be dimensionless, although it is apparently

a function of the wave number k. However, the form of (31) indicates that I1 is actually
independent of the length scale, so we can set k = 1 during integration.

To perform the integration we consider a volume element r2dr d cos θ dφ in a spherical
coordinate system with angle θ defined relative to the z axis. It is more convenient to keep
z = r cos θ as a variable of integration, using dz = rd cos θ. Then, the volume integration
has the form ∫

V

=

∫ ∞

0

r dr

∫ r

−r

dz

∫ 2π

0

dφ. (32)

Most terms of (31) are independent of φ, so their φ integral is just 2π. For the terms in
x2, we have ∫ 2π

0

x2 dφ =

∫
r2 sin2 θ cos2 φ dφ = π(r2 − z2). (33)

While each of the four main terms of (31) diverges on integration, it turns out that the
two terms in cos z taken together are finite (and likewise for the two terms in sin z). We find
that

I1 = IA + IB =
16π

3
, (34)

where

IA = 2π

∫ ∞

0

dr
sin r

r

∫ r

−r

dz z sin z + 2π

∫
dr

cos r

r2

∫
dz z sin z = 4π, (35)

and

IB = π

∫
dr

sin r

r

∫
dz cos z − 3π

∫
dr

sin r

r3

∫
dz z2 cos z (36)

+π

∫
dr cos r

(
1 +

1

r2

) ∫
dz cos z + π

∫
dr

cos r

r2

(
1 − 3

r2

) ∫
dz z2 cos z =

4π

3
.

From detailed evaluation of the radial integral, we find that the integrand approaches
a constant value as r goes to zero, and that the contribution to the integral at large r
diminishes as 1/r. That is, the principal contribution is from the region kr ≈ 1.
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We are left with the result (30) that the integral of the interference term in the field
momentum density has a constant longitudinal term for an electron oscillating in a circularly
polarized wave.

Recall that we have performed the analysis in a frame in which the electron has no
longitudinal momentum. However, as remarked in sec. IIA, prior to its encounter with the
wave, the electron had velocity vz = −η2c/2 (assuming η2 � 1), and therefore had initial
mechanical momentum pmech,z = −η2mc/2. So, we would expect that this initial mechanical
momentum had been converted to field momentum, if momentum is to be conserved.

We continue to be puzzled as to why the result (30) is 8/3 times larger than that required
to satisfy momentum conservation.

4.4 Linear Polarization

Consider now the case of a linearly polarized wave with electric field along the x axis. Then,
Erms = Ex/

√
2, and the prefactors in (27) can be written as η2mc/2π.

The remaining terms in the momentum density Pwave,osc,z have time dependences that
can be expressed as sums of pure frequencies via the identities

2 cos(kz − ωt) cos(kr − ωt)

= cos kz cos kr + sin kz sin kr + (cos kz cos kr − sin kz sin kr) cos 2ωt (37)

+(cos kz sin kr + sin kz sin kr) sin 2ωt,

and

2 cos(kz − ωt) sin(kr − ωt)

= cos kz sin kr − sin kz cos kr + (cos kz sin kr + sin kz cos kr) cos 2ωt (38)

+(sin kz sin kr − cos kz cos kr) sin 2ωt,

Inserting these into eq. (27) and keeping only those terms that are even in z, we find the
integrated field momentum to be

pwave,osc,z =

∫
V

Pwave,osc,z = −η2mc

4π
(I1 + I2 cos 2ωt + I3 sin 2ωt), (39)

where integral I1 = 16π/3 has been discussed in eqs. (31-36),

I2 = −IA + IB = −8π

3
, (40)

and integral I3 has the integrand,

k2z

r2
sin kz sin kr − kz

r3
sin kz cos kr −

(
3kx2

r4
− k

r2

)
cos kz sin kr

+

(
k2

r
− k2y2

r3
+

3y2

r5
− 1

r3

)
cos kz cos kr. (41)

On evaluation, I3 = 0.
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Hence, the longitudinal component of the interference field momentum of a free electron
in a linearly polarized wave is

pwave,osc,z = −4

3
η2mc +

2

3
ηmc cos 2ωt. (42)

The constant term is the same as that found in eq. (30) for circular polarization, and rep-
resents the initial mechanical momentum of the electron that became stored in the electro-
magnetic field once the electron became immersed in the wave.

As for the second term of (42), recall from eq. (11) that for linear polarization the electron
oscillates along the z axis at frequency 2ω. Hence the z component of the mechanical
momentum of the electron is

pmech,z = mż = −η2mc

2
cos 2ωt. (43)

The term in pwave,osc,z at frequency 2ω is −4/3 of the longitudinal component of the me-
chanical momentum associated with the “figure 8” motion of the electron. Thus, we have
not been completely successful in accounting for momentum conservation when the small,
oscillatory longitudinal momentum is considered.

The factors of 4/3 and 8/3 are presumably not the same as the famous factor of 4/3
that arise in analyses of the electromagnetic energy and momentum of the self fields of an
electron [12, 13]. A further appearance of a factor of 8/3 in the present example occurs when
we consider the field energy of the interference terms.

5 The Interference Field Energy

It is also interesting to examine the electromagnetic field energy of an electron in a plane
wave. As for the momentum density (13), we can write

Utotal =
(Ewave + Estatic + Eosc)

2 + (Bwave + Bosc)
2

8π
, (44)

for the field energy density. Again, we no not consider the divergent energies of the self
fields, but only the interference terms,

Uint = Uwave,static + Uwave,osc, (45)

where

Uwave,static =
Ewave · Estatic

4π
. (46)

and

Uwave,osc =
Ewave · Eosc + Bwave · Bosc

4π
. (47)

In general, the interference field energy density is oscillating. Here, we look for terms
that are nonzero after averaging over time. We see at once that

〈Uwave,static〉 = 0, (48)

10



since all terms have time dependence of cosωt or sinωt. In contrast, 〈Uwave,osc〉 will be
nonzero as its terms are products of sines and cosines:

Uwave,osc =

− e2E2
x cos(kz − wt)

4πmω2

[(3kx2

r4
− k

r2

)
sin(kr − ωt) +

(
k2

r
− k2x2

r3
+

3x2

r5
− 1

r3

)
cos(kr − ωt)

]

− e2ExEy cos(kz − wt)

4πmω2

[3kxy

r4
cos(kr − ωt) +

(
k2xy

r3
− 3xy

r5

)
sin(kr − ωt)

]
,

+
e2ExEy sin(kz − wt)

4πmω2

[3kxy

r4
sin(kr − ωt) −

(
k2xy

r3
− 3xy

r5

)
cos(kr − ωt)

]
(49)

+
e2E2

y sin(kz − wt)

4πmω2

[(3ky2

r4
− k

r2

)
cos(kr − ωt) −

(
k2

r
− k2y2

r3
+

3y2

r5
− 1

r3

)
sin(kr − ωt)

]

− e2E2
y sin(kz − wt)

4πmω2

[k2z

r2
sin(kr − ωt) +

kz

r3
cos(kr − ωt)

]

− e2E2
x cos(kz − wt)

4πmω2

[k2z

r2
cos(kr − ωt) − kz

r3
sin(kr − ωt)

]
.

The terms in ExEy will vanish on integration over volume. The various time averages
are

〈2 cos(kz − ωt) cos(kr − ωt)〉 = cos kz cos kr + sin kz sin kr,

〈2 sin(kz − ωt) cos(kr − ωt)〉 = sin kz cos kr − cos kz sin kr,

〈2 cos(kz − ωt) sin(kr − ωt)〉 = cos kz sin kr − sin kz cos kr,

〈2 sin(kz − ωt) sin(kr − ωt)〉 = cos kz cos kr + sin kz sin kr. (50)

After performing the time average on eq. (49), we keep only terms that are even in z.
These terms have the form (31), and so we find that

uint =

∫
V

〈Uwave,osc〉 = −e2(E2
x + E2

y)

8πmω2
I1 = −4

3
η2mc2, (51)

for waves of either linear or circular polarization. As with the case of the interference
field momentum, this interference field energy is distributed over a volume of order a cubic
wavelength around the electron. Being an interference term, its sign can be negative.

We can interpret the quantity,

uint

c2
= −4

3
η2m, (52)

as compensation for the relativistic mass increase of the oscillating electron, which scales as
v2

rms/c
2 and hence as η2 (for small η, recall eq. (7)). Indeed, a general result for the motion

of an electron in a plane wave of arbitrary strength η is that its rms relativistic mass, often
called its effective mass, is [7, 10]

meff = m
√

1 + η2. (53)
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For small η, the increase in mass is

Δm ≈ 1

2
η2m. (54)

Thus, the decrease in field energy due to the interference terms between the electromag-
netic fields of the wave and electron is −8/3 times the mass increase it should compensate.

6 Discussion

6.1 Temporary Acceleration

We remarked in sec. IIA that the preceding analysis holds in the average rest frame of the
electron. If instead the electron had been at rest prior to the arrival of the plane wave, the
velocity of the average rest frame would be vz = (η2/2)/(1 + η2/2). For this, the amplitude
of the plane wave is presumed to have a slow rise from zero to a long plateau at strength η,
followed by a slow decline back to zero.

Once the wave has passed by the electron, the interference field energy, (51), goes to zero
since the integral is dominated by the contribution at distances of order a wavelength from
the electron. Hence, the electron’s kinetic energy must return to zero (or to its initial value
if that was nonzero). A plane wave, or more precisely, a long pulse that is very nearly a
plane wave, cannot transfer net energy to an electron. The acceleration of the electron from
zero velocity to vz is only temporary, i.e., for the duration of the plane wave pulse. This
result was first deduced by di Francia [14] and by Kibble [7] by different arguments.1

6.2 The Radiation Reaction

Our analysis of the energy balance of an electron in a plane wave is not quite complete. We
have neglected the energy radiated by the electron. Since the rate of radiation is constant
(once the electron is inside the plane wave), the total radiated energy grows linearly with
time, and eventually becomes large. The interference energy, (51), is constant in time, and
hence cannot account for the radiated energy.

More to follow.....

7 Appendix: Liénard-Wiechert Fields

As an alternative to the dipole approximation, we consider the use of the Liénard-Wiechert
potentials and fields of a moving electron. We have limited our analysis to the case of a weak
plane wave (η �1), for which the velocity of the electron is always small (β = v/c � 1).
In this case we may approximate the time-dependent part of the fields of the electron as
proportional to the strength of the field of the plane wave (proportional to η). Then we
find that the Liénard-Wiechert fields of the electron are the same as the fields in the dipole
approximation.

1The present consensus is that a focused laser beam can transfer some net energy to a “free” electron in
“vacuum”.
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We can show this in two ways. First, we verify that the Liénard-Wiechert potentials
reduce to eqs. (20) and (22). Second, we can verify directly that the Liénard-Wiechert fields
are the same as eqs. (24) and (25).

The Liénard-Wiechert potentials are

φ =

[
e

R(1 − β · n̂)

]
, A =

[
eβ

R(1 − β · n̂)

]
, (55)

where the electron is at position x, the observer is at r, their separation is R = r − x,
the unit vector n̂ is R/R, and the brackets, [ ], indicate that quantities within are to be
evaluated at the retarded time, t′ = t − R/c.

We work in the average rest frame of the electron. In the weak-field approximation we
ignore the longitudinal motion of the electron, (11), which is quadratic in the strength of
the plane wave. Then the velocity vector of the electron is

β(t) =
e

mωc
(Ex sinωt x̂ − Ey cos ωt ŷ) , (56)

from eq. (6). The retarded velocity is thus,

[β] = β(t′ = t − R/c) = − e

mωc
(Ex sin(kR − ωt) x̂ + Ey cos(kr − ωt) ŷ) . (57)

Distance R differs from r because the electron’s oscillatory motion takes it away from the
origin. However, the amplitude of the motion is proportional to strength of the plane wave.
Hence, we may replace R by r in eq. (57) with error only in the second order of field strength.

Since the vector potential includes a factor β in the numerator, we can replace R by r
and 1 − β · n̂ by 1 in the first order in the field strength of the plane wave. Thus,

A = − e2

mωcr
(Ex sin(kr − ωt) x̂ + Ey cos(kr − ωt)) ŷ, (58)

in agreement with eq. (23).
In the scaler potential, we first bring β to the numerator:

φ ≈ e[1 + β · n̂]

[R]
. (59)

Unit vector [n̂] differs from unit vector r̂ due to the oscillation of the electron, which is
proportional to the field strength of the plane wave. For the scalar potential, however, we
must expand the factor 1/[R] to first order in the field strength. Now,

[R] = |r − x(t′)| =
√

r2 − 2r · x(t′) + x2(t′), (60)

with

x(t′) ≈ − e

mω2
(Ex cos ωt′ x̂ + Ey cos ωt′ ŷ) ≈ − e

mω2
(Ex cos ω(kr − ωt) x̂ −Ey cos(kr − ωt) ŷ) ,(61)

again approximating R by r in the arguments of the cosine and sine, accurate to first order
in the field strength. Hence,

1

[R]
≈ 1

r
(1 + r · x(t′)) ≈ 1

r

{
1 − e

(xEx cos(kr − ωt) − yEy sin(kr − ωt))

mω2r2

}
. (62)
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Altogether,

φ ≈ e

r
− e2

mω2

{
Ex

(
kx

r2
sin(kr − ωt) +

x

r3
cos(kr − ωt)

)

+Ey

(
ky

r2
cos(kr − ωt) − y

r3
sin(kr − ωt)

)}
, (63)

in agreement with eq. (22).
Similarly, we could proceed from the Liénard-Wiechert fields,

E = e

[
n̂− β

γ2(1 − β · n̂)3R2

]
+

e

c

⎡
⎣ n̂×

{
(n̂− β) × β̇

}
(1 − β · n̂)3R

⎤
⎦ ,

B = [n̂×E]. (64)

After some work, we find that these fields are the same as eqs. (24-25), to first order in the
strength of the plane wave.
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