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1 Problem

A uniform, thin disk of mass m and radius ρ is constrained to lie in the (vertical) x-y plane,
where the x-axis is horizontal, the y-axis is vertical, subject to gravitational acceleration
g = −g ŷ. The center C of the disk is not fixed, but rather some point on the disk,
instantaneously at fixed point O in the lab frame, is constrained to have constant, vertical
velocity V = V ŷ with respect to a fixed origin O in the lab frame. The constraint could be
applied by a pair of rollers, driven with constant angular velocity, that lie in the (vertical)
y-z plane, where where ẑ = x̂× ŷ points out of the page in the left figure below; the rollers
make contact with the disk at the fixed point O.

Deduce the equations of motion of this system, supposing that the drive rollers exert
both a force F and a torque τO on the disk, where the latter can be approximated at −kθ̇ ẑ
with k > 0.

This problem is based on [1].

2 Solution

The center of mass of the disk, at point C = (x, y) in the x-y plane, is at distance r = x x̂+y ŷ
from origin O that is fixed in the lab frame. We define θ as the angle between r (line OC)
and the x-axis. Then, Ω = dθ/dt ẑ = θ̇ ẑ can be called the “orbital” angular velocity of the
disk about fixed point O.

The disk has “spin” angular velocity ω = φ̇ z about its center, C , where angle φ is
measured with respect to a horizontal axis through the center C of the disk, for some
reference point fixed on, say, the rim of the moving disk.
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This problem can be described by three independent coordinates, x, y, or r, θ, of the
center of the disk and and angle φ of a point on the disk to the x-axis.

2.1 Constraint Relations

A key first step in analyses of examples of constrained motion is to identify the constraint.
The (nonholonomic) constraint on the velocity V of the point on the disk instantaneously
at the origin O can be written as

V = V ŷ = ṙ − ω × r, (1)

which is the sum of the velocity ṙ = ẋ x̂ + ẏ ŷ of the center of the disk and the velocity
ω × (−r) = yφ̇ x̂ − xφ̇ ŷ, relative to the center of the disk, of the point on the disk at
instantaneously at O.

The x- and y-components of the constraint relation (1) are then,

ẋ = −yφ̇, ẏ = V + xφ̇. (2)

While our analysis will emphasize (x, y) coordinates, it is useful to display some results
in terms of (r, θ) coordinates. First, we note that

ṙ = ṙ r̂ + r θ̇ θ̂, (3)

in cylindrical coordinates (r, θ). Then, we find from eqs. (1) and (3) that

V · r = V r sin θ = V y = r · ṙ = rṙ, (4)

V sin θ = ṙ. (5)

Also, we can relate θ̇ to φ̇, x and y by noting that

[V × r]z = −V r cos θ = [(ṙ − ω × r) × r]z = [(ṙ r̂ + r θ̇ θ̂ − φ̇ ẑ × r) × r]z = −r2θ̇ + r2φ̇, (6)

V cos θ = r
(
θ̇ − φ̇

)
, (7)

V r cos θ = V x = r2
(
θ̇ − φ̇

)
, (8)

θ̇ = φ̇ +
V x

x2 + y2
, (9)

since r2 = x2 + y2.

2.2 Equations of Motion

The forces on the disk are −mg ŷ due to gravity, acting at the center of the disk, and a
frictional force F (in the x-y plane) acting at the fixed origin O to maintain the constant
velocity V of the point on the disk instantaneously at point O. In addition, there exists a
frictional torque τ O on the disk about point O, which can be approximated as τO = −kΩ =
−kθ̇ ẑ with k > 0.

The equations of motion of the disc are then

mr̈ = F− mg ŷ, (10)
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and

dJ

dt
= τ O + r × (−mg ŷ) = −k θ̇ ẑ − mgx ẑ. (11)

Here, J is the angular momentum of the disk about the fixed origin O,

J = r × mṙ + IC ω = (mxẏ − my ẋ + ICφ̇) ẑ, (12)

being the sum of the “orbital” angular momentum r × mṙ of the center of mass about
point O and the “spin” angular momentum IC ω of the disk about its center of mass, where
IC = mρ2/2 is the moment of inertia of a uniform disk of radius ρ about its center. Recalling
eq. (2), we can rewrite eq. (12) as

J = J ẑ =
(
mxV + mx2φ̇ + my2φ̇ + IC φ̇

)
ẑ =

(
mxV + mr2φ̇ + IC φ̇

)
ẑ. (13)

Then, recalling eqs. (2), and (4), the angular equation of motion (11) reduces to

dJ

dt
= −myV φ̇ + 2mrṙφ̇ + mr2φ̈ + IC φ̈ = myV φ̇ +

(
mr2 + IC

)
φ̈ = −k θ̇ − mgx, (14)

IO φ̈ = −k φ̇ − kV x

x2 + y2
− mgx − mV y φ̇. (15)

where we have introduced IO = mr2 + IC as the (time-dependent) moment of inertia of the
disk about point O, and used eq. (9) to obtain eq. (15) from (14).

We do not need to use the force equation (10) to solve for the motion as we already have
the results of eq. (2),

ẋ = −yφ̇, ẏ = V + xφ̇, (16)

from the constraint equation (1), which are in effect first integrals of second-order differential
equations of motion.1 Once the motion is known, eq. (10) could be used to compute the
constraint force F.

The equations of motion (15)-(16) are not simple, and in general the motion is com-
plex/chaotic, bearing some relation to the cases of a double pendulum and a driven, inverted
pendulum. See [2]-[31] for discussion of these themes.

We could rewrite eqs. (15)-(16) in terms of the “spin” angular velocity ω = φ̇ as

ẋ = −yω, ẏ = V + xω, IO ω̇ = −kω − kV x

x2 + y2
− mgx− mV y ω, (19)

1We can also display the equations of motion in terms of the coordinates r, θ and φ. The vector constraint,
eq. (1), provides two scalar relations among these three coordinates, eqs. (4) and (7),

ṙ = v sin θ, r
(
θ̇ − φ̇

)
= V cos θ. (17)

The needed third equation of motion is obtained from eq. (14), rewriting it in terms of r, θ and φ as

IO φ̈ = −k θ̇ − mgr cos θ − mV r sin θ φ̇. (18)
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such that the three first-order differential equations (19) are closely related to eqs. (25)-(27)
in the paper [32] by Lorenz that stimulated modern “chaos theory”.2 See also [34, 35].
See [36]-[41] for a different “tabletop” experiment that illustrates Lorenz’ equations.3 A
somewhat related paper is [42].

The only solution with steady motion for V > 0 is with x = 0, θ = 90◦, φ = constant,4

in which case y = r = −ρ + V t. This steady, vertical motion of the disk, without rotation,
holds only for 0 < t < 2ρ/V , and is unstable against small perturbations.

However, there exists a motion for large V that can be slowly varying, with the center
of the disk at rest at y = 0 and x = −V/φ̇ according to eq. (16). Then, ẋ ≈ 0 = ẏ, and
the equation of motion (15) reduces to IOφ̈ ≈ −mgx, such that the “spin” angular velocity
ω = φ̇ changes slowly for small x (and hence large φ̇). Here, the disk simply spins with its
center near the point of contact with the drive wheels.5

For smaller V there exists a quasisteady motion very similar to that of a simple pendulum
with the center of the disk moving in a quasicircular arc at a nearly constant distance from
the point of contact with the drive wheels.6

A Appendix: The Plane of the Disk is Horizontal

If the disk is constrained to lie in a horizontal plane (rather than in a vertical plane as
above),7 then the preceding analysis holds supposing the y axis is horizontal and the z-axis
in vertical, and g is set to zero (as gravity has no effect on the motion in this case).

Then, the equation of motion (15) simplifies slightly to

IO φ̈ = −k φ̇ − kV x

x2 + y2
− mV y φ̇, (20)

while the constraint relations (16) hold as before.
Now, the motion with center of the disk at rest with y = 0 and x = −V/φ̇ is steady, with

constant φ̇ = ω0. However, this motion is unstable in that if y is perturbed to a negative
value, then IOφ̈ ≈ −mV y φ̇, so φ̇ moves away from ω0 and does not return to this condition.
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