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1 Problem

Discuss the momentum (mechanical, field, and total) of an e+e− pair in the classical limit,
supposing the particles move in a circle at opposite ends of a diameter.

Take into account that the electron and positron have rest mass me, electric charge of
magnitude e and magnetic moments of approximate magnitude e�/2mec (in Gaussian units),
where � is Planck’s constant divided by 2π, and c is the speed of light in vacuum.1,2

2 Solution

2.1 Thomson on the Field Momentum of a Charge and a Magnet

In 1891, J.J. Thomson [9] first enunciated what has since become the standard expression
for the density of momentum stored in electromagnetic fields in vacuum,

pEM =
E × B

4πc
. (1)

In 1904, he argued (p. 348 of [10], see also [11, 12]) that the total field momentum,

PEM =

∫
pEM dVol =

∫
E ×B

4πc
dVol, (2)

is equal, assuming the magnetic field to be due to electrical currents (and that electromag-
netic waves can be neglected), to the form,

P
(Maxwell)
EM =

∫
ρA(C)

c
dVol, (3)

given by Maxwell [13, 14], who built this concept on Faraday’s electrotonic state,3

1That electrons have intrinsic angular momentum (spin) and an intrinsic magnetic moment was first pro-
posed by Uhlenbeck and Goudsmit (1925) [1], and was deduced as a consequence of Dirac’s (quantum) theory
of the electron (1928) [2]. That theory included nominally negative-energy states, which were reinterpreted
as positive-energy “electrons” that have positive charge by Dirac (1931) [3] (in a paper better known for
introducing the quantum condition ep/c = n�/2 if magnetic monopoles p exist). The experimental discovery
of positive electrons was reported by Anderson (1933) [4], who named them positrons (apparently following
a suggestion by a referee). Quantum e+e− states were first discussed by Mohoroviĉiĉ (1934) [5], given the
name positronium by Ruark (1945) [6], and first detected by Deutsch (1951) [7].

2This problem on “classical positronium” was considered in Appendix B of [8], with neglect of the
magnetic moments.

3Faraday first speculated on an electro-tonic state in Art. 60 of [15]. Other mentions by Faraday of the
electrotonic state include Art. 1661 of [16], Arts. 1729 and 1733 of [17], and Art. 3269 of [18].
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where ρ is the electric charge density and A(C) is the vector potential in the Coulomb
gauge (that Maxwell used prior to the explicit recognition of gauge conditions [19]).4,5

In 1904, Thomson [10, 11, 12] illustrated the concept of electromagnetic field momentum
for several examples of systems at rest, including a small magnet with magnetic dipole
moment m together with an electric charge q well outside the magnet. He computed that if
the magnetic field is due to electrical currents (Ampèrian magnetic moment), than the field
momentum of the system is,

PEM =
qA

c
= q

m × r̂

cr2
=

E ×m

c
, (8)

where r̂ points from the magnetic dipole to the charge, such that E = −q r̂/r2 is the electric
field at the magnetic dipole due to the electric charge. In contrast, if the magnetic dipole
were due to a pair of opposite, true (Gilbertian) magnetic poles, Thomson noted that the
field momentum would be zero.

4Some of Thomson’s thoughts on field momentum are traced in [20].
Thomson [9] argued that a sheet of electric displacement D (parallel to the surface) which moves per-

pendicular to its surface with velocity v must be accompanied by a sheet of magnetic field H = v/c × D
according to the free-space Maxwell equation ∇×H = (1/c) ∂D/∂t. Then, the motion of the energy density
of these sheets implies there is also a momentum density, eqs. (2) and (6) of [9],

p(Thomson)
EM =

D ×H
4πc

. (4)

In 1893, Thomson transcribed much of his 1891 paper into the beginning of Recent Researches [21], adding
the remark (p. 9) that the momentum density (4) is closely related to the Poynting vector [22, 23],

S =
c

4π
E× H. (5)

Thomson argued, in effect, that the field momentum density (4) is related by pEM = S/c2 = uv/c2.
Variants of this argument were given by Heaviside in 1891, sec. 45 of [24], and much later in sec. 18-4 of

[25], where it is noted that Faraday’s law, ∇×E = −(1/c) ∂B/∂t, combined with the Maxwell equation for
H implies that v = c in vacuum, which point seems to have been initially overlooked by Thomson, although
noted in sec. 265 of [26].

The form (4) was also used by Poincaré in 1900 [27], following Lorentz’ convention [28] that the force
on electric charge q be written q(D + v/c × H), and that the Poynting vector be (c/4π)D × H. In 1903
Abraham [29] argued for,

p(Abraham)
EM =

E× H
4πc

=
S
c2

, (6)

and in 1908 Minkowski [30] advocated the form,

p(Minkowski)
EM =

D × B
4πc

. (7)

Minkowski, like Poynting [22], Heaviside [23] and Abraham [29], wrote the Poynting vector as E × H. See
eq. (75) of [30]. For some remarks on the “perpetual” Abraham-Minkowski debate see [31].

5Thomson did not relate the momentum density (2) to Maxwell’s argument that radiation pressure P
of light (sec. 792 of [14]) is equal to its energy density u, P = u = D2/4π = H2/π, eq. (2), until 1904
(p. 355 of [10]) when he noted that P = F/A = c pEM = D2/4π = H2/4π for fields moving with speed c in
vacuum, for which D = H . Possibly, Thomson delayed publishing the relation of radiation pressure to his
expression (4) until he could demonstrate its equivalence to Maxwell’s form (3). For other demonstrations
of this equivalence, see Appendix B of [41], and [32].

2



Thomson was somewhat aware that it would be unusual for a system “at rest” to have
nonzero total momentum, and commented (p. 348 of [10]) on the ambiguity as to whether
the charge or the magnet would move if the magnetic moment were to vanish. This difficulty
went largely unnoticed until 1967 [33, 34], leading Shockley [35] to conclude that the system
contains a hidden momentum that had been overlooked in the (macroscopic) analyses, such
that the total momentum of a system “at rest” is indeed zero.6

2.2 Field Momentum of an Electron and Positron at Rest

We infer from eq. (8) that if an electron and positron could be at rest in each other’s
electromagnetic fields, then their total field momentum would be,

PEM =
E × (m+ + m−)

c
(e+e− at rest), (9)

where E is the electric field of the electron at the position of the positron (which equals
the field of the positron at the position of the electron), and m+ and m− are the magnetic
moments of the positron and electron, respectively.

We then expect that the system contains a “hidden” momentum,

Phidden = −PEM =
(m+ + m−) × E

c
, (e+e− at rest), (10)

such that Ptotal = Phidden + PEM = 0.
The existence of this “hidden” momentum is somewhat disconcerting, in that as far as is

known from high-energy scattering experiments, the electron and positron are structureless,7

and hence can’t “hide” any momentum inside themselves. Of course, the fact that electrons
and positrons have magnetic moments is also disconcerting, given their apparent lack of
internal structure.

The magnitude of the field momentum (9) and of the “hidden” momentum (10) is of
order e2

�/mec
2d2 = �re/d

2, where d is the distance between the electron and positron, and
re = e2/ec

2 is the so-called classical electron radius. As these momenta are of order 1/c2

they are sometimes called “relativistic” effects.

The notion of “hidden” momentum was invoked above to restore to zero the total momen-
tum of an isolated system “at rest”. See [41] for a general definition of “hidden” momentum
in a macroscopic description of a subsystem, isolated or not, in terms of quantities of that
subsystem only. One consequence of this definition is that the field momentum (2) is also the
“hidden” momentum of the subsystem of macroscopic electromagnetic fields in quasistatic
examples where electromagnetic waves are neglected.

6Variants of Thomson’s example of a magnet and an electric charge in which the (electrically neutral)
current is modeled as charges moving inside a nonconducting tube are considered in [33], ex. 12-13 of [36],
and [37]. A model of the current as charges fixed on the rim of a rotating disk is considered in [35, 38], and
the case of a toroidal permanent magnet is discussed in [39].

7A controversial interpretation [40] of the data is that the size of the electron is about 10−17 cm, ≈
1/10, 000 of the size of a proton/neutron. My view here is that this value should be regarded as the present
experimental limit on the size of the electron.
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2.3 Circular Motion

An electron and positron will not stay at rest, but can be in a quasistatic state of uniform
circular motion with radius r and velocity v related by v2/c2 ≈ re/4r, if radiation is ignored.8

As discussed, for example, in sec. 4.1.4 of [41], the field momentum and “hidden” momentum
of quasistatic systems are at order 1/c2, and the same as those for the corresponding system
at rest. Hence, we anticipate that eqs. (9)-(10) hold for an e+e− system in uniform circular
motion, where the symbol R is twice the radius r of the circular orbit. Justification of this
claim is given to order 1/c2 in Appendix A.

Of particular interest is the case that m+ = m−, and both moments are perpendicular
to the plane of their orbits.9 Then, the field momentum E × (m+ + m−)/c of the system is
nonzero,10 while its total mechanical momentum is zero. The center of mass/energy of this
system is at rest, so the total momentum must be zero. Hence, there must be a “hidden
mechanical momentum” associated with the moving electrons/positrons which is equal and
opposite to the field momentum.

There is no classical model for this “hidden” momentum, in that there exists no successful
classical model of the magnetic moment of an electron. One can say that the “hidden”
momentum in an e+e− system is a quantum effect that protudes into a classical discussion.

2.4 Comments

“Hidden” momentum can exist in the macroscopic description of (sub)systems not involving
permanent magnetism, which was the context of Shockley’s original consideration [35] of this
concept. In such cases, macroscopic explanations can be found for the “hidden” momen-
tum, as in [33, 36, 37]. If one takes a microscopic view of these examples, in which intrinsic
magnetic moments are neglected and all charges are structureless points that can’t con-
tain internal momentum, one finds [42] no microscopic “hidden” momentum,11 and that the

8See Appendix B for discussion of the velocity, and Appendix C for discussion of the radiation.
9The spin angular momentum S± of an electron or positron has magnitude �/2, and is related to its

magnetic moment m± by S± = ±(mc/e)m±, so that if m+ = m− the total spin angular momentum of the
pair is zero.

10The electromagnetic field momentum associated with the magnetic fields B±(v) = v±/c × E± of the
moving charges is zero. To see this, we note that the electric fields at point r are E± = ±eR±/R3± =
±e(r − r±)/R3±, where r− = −r+ and v− = −v+. Hence,

PEM(v) =
∫

(E+ + E−) × (B+ + B−)
4πc

dVol

=
∫

E+ ×B+ + E− × B−
4πc

dVol +
∫

E+ × B− + E− × B+

4πc
dVol

= −e2

∫
(r − r+) × [v− × (r − r−)] + (r − r−) × [v+ × (r − r+)]

4πc2R3
+R3−

dVol

= −e2

∫
[r · (v− + v−)]r − (r · v−)r+ − (r · v+)r− − (r+ · v−)r − (r− · v+)r + (r+ · v−)r− + (r− · v+)r+

4πc2R3
+R3−

dVol

= 0. (11)

11See also sec. 4 of [41].
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macroscopic “hidden” momentum of electrical currents is associated with the field momen-
tum of the microscopic electromagnetic fields which were neglected in the macroscopic view.
Of course, such microscopic arguments fail for examples involving permanent magnetism,
and also fail to account for the stability of macroscopic matter, both of which phenomena
are better understood in quantum theory.12,13

A Appendix: Darwin’s Approximation

As “hidden” momentum (including the field momentum) is of order 1/c2, we will consider
details of circular motion of an e+e− system only to this order. A general discussion of
the motion of charged particles to order 1/c2 was given by Darwin [44] (1920), prior to the
understanding [1] that particles can have intrinsic magnetic moments.

A.1 The Darwin Approximation without Magnetic Moments

The Lagrangian for a charge e of mass m that moves with velocity v in an external elec-
tromagnetic field that is described by potentials V and A can be written (see, for example,
sec. 16 of [45]),

L = −mc2
√

1 − v2/c2 − eV + e
v

c
· A. (12)

Darwin [44] worked in the Coulomb gauge, and kept terms only to order v2/c2. For a
collections of charged particles, the Darwin Lagrangian is,

L =
∑

i

miv
2
i

2
+

∑
i

miv
4
i

8c2
−

∑
i>j

eiV
(C)
ij +

∑
i>j

ei
vi

c
· A(C)

ij , (13)

where we ignore the constant sum of the rest energies of the particles, and V
(C)

ij , A
(C)
ij are

the Coulomb-gauge potentials at particle i due to particle j.
The Lagrangian (13) does not depend explicitly on time, so the corresponding Hamilto-

nian,

H =
∑

i

pi · vi − L, (14)

is the conserved energy of the system, where,

pi =
∂L
∂vi

= mivi +
miv

2
i

2c2
vi +

∑
j �=i

ei

A
(C)
ij

c
(15)

12One could take that attitude that “classical” electromagnetism excludes quantum effects, and hence
excludes intrinsic magnetic moments and permanent magnetism. Then, in the microscopic view of this
“classical” electrodynamics, that all electrical charges are structureless points and “point” magnetic dipoles
don’t exist, there will be no “hidden” momentum. It remains that “hidden” momentum exists in a macro-
scopic description of this electrodynamics.

Note that the “classical” electrodynamics of structureless point charges is quite different from Maxwell’s
vision of electrodynamics [13], which accommodated permanent magnetism,and did not assume that electric
charge is associated with mathematical points.

13A quantum calculation of “hidden” momentum in a hydrogen atom, ignoring electron spin, has been
given in [43].
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is the canonical momentum of particle i. Hence, the Hamiltonian/energy is,14

U =
∑

i

miv
2
i

2
+

∑
i

3miv
4
i

8c2
+

∑
i>j

eiej

Rij
+

∑
i>j

eiV
(C)
ij +

∑
i>j

ei
vi

c
· A(C)

ij . (17)

The Coulomb-gauge scalar and vector potentials due to a charge e that has velocity v
but no magnetic moment are (see sec. 65 of [45] or sec. 12.6 of [46]),

V (C)
e =

e

R
, A(C)

e =
e[v + (v · n̂)n̂]

2cR
, (18)

where n̂ is directed from the charge to the observer, whose (present) distance is R. Then,
the Lagrangian, the canonical momenta and the conserved energy/Hamiltonian for a system
of electrical charges without magnetic moments are,

L =
∑

i

miv
2
i

2
+

∑
i

miv
4
i

8c2
−

∑
i>j

eiej

Rij
+

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (19)

pi = mivi +
miv

2
i

2c2
vi +

∑
j �=i

eiej

2c2Rij
[vj + n̂ij(vj · n̂ij)] (20)

and,

U =
∑

i

miv
2
i

2
+

∑
i

3miv
4
i

8c2
+

∑
i>j

eiej

Rij
+

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (21)

as first given by Darwin [44].
The part of this Hamiltonian/energy associated with electromagnetic interactions is,

UEM =
∑
i>j

eiej

Rij

+
∑
i>j

eiej

2c2Rij

[vi · vj + (vi · n̂ij)(vj · n̂ij)] . (22)

A.2 The Darwin Approximation Including Magnetic Moments

In a frame where a particle with intrinsic electric and magnetic dipole moments p and m
has velocity v it appears to have both an electric dipole moment p′ and magnetic moment
m′ given by,15

p′ = p +
v

c
× m − (1 − 1/γ)(v̂ · p)v̂, m′ = m − v

c
× p− (1 − 1/γ)(v̂ · m)v̂. (23)

14The integral form of eq. (17),

UEM =
1
2

∫ (
ρφ +

J · A
c

)
dVol, (16)

shows the possibly surprising result that the electromagnetic energy in the Darwin approximation has the
form of that for a system of quasistatic charge and current densities ρ and J (which implies use of the
Coulomb gauge; see, for example, sec. 5.16 of [46] or secs. 31 and 33 of [50]).

15The transformation (23) was first written for macroscopic densities P and M of electric and magnetic
dipole moments by Lorentz [47], and for an electron by Frenkel [48, 49].
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As far as we know, the intrinsic electric dipole moment p of electrons and positrons is zero,
so the moments of a moving electron/positron are, ,approximately,

p′ ≈ v

c
× m, m′ ≈ m. (24)

The Coulomb-gauge scalar potential associated with the “motional” electric dipole moment
p′ is, to order 1/c2,

V (C)
m =

p′ · n̂
R2

≈ n̂ · (v ×m)

cR2
, (25)

The vector potential of a magnetic moment at rest is,

A(C)
m =

m × n̂

R2
. (26)

The vector potential of a moving magnetic dipole differs from this, but with terms that
depend on various powers of 1/c. Since we want the electromagnetic momentum qA/c to
order 1/c2, we only need the vector potential to order 1/c. Then, as the magnetic moment
m is of order 1/c, we don’t need any corrections for the form (26).

We can verify this conclusion by following the procedure of sec. 65 of [45], which first finds the (approx-
imate) retarded potentials in the Lorenz gauge, and then transforms these to the Coulomb gauge.

The retarded (Lorenz-gauge) vector potential is,

A(L)
m (t) =

[
m′ ×R

R3

]
t′=t−R/c

≈ m × R
R3

∣∣∣∣
t

=
m × n̂

R2

∣∣∣∣
t

, (27)

since we want the electromagnetic momentum qA/c to order 1/c2, we only need the vector potential to order
1/c. Then, since the magnetic moment m is of order 1/c, we don’t need any corrections to these that effects
of retardation negligible for A in the desired approximation. More care is required for the retarded scalar
potential, which can be expanded as,

V (L)(r, t) =
∫

ρ(r′, t′ = t − R/c)
R

dVol′

≈
∫

ρ(r′, t)
R

dVol′ − 1
c

∂

∂t

∫
ρ(r′, t) dVol′ +

1
2c2

∂2

∂t2

∫
Rρ(r′, t) dVol′. (28)

For an electric dipole moment p′ = qd′ consisting of electric charges ±q separated by (small) distance d′,
we have that R± = R± ± d′/2, R± ≈ R ∓ n̂ · d′/2, so the Lorenz-gauge scalar potential of the magnetic
dipole in the lab frame is,

V (L)
m ≈ p′ · n̂

R2
− 1

2c2

∂2

∂t2
p′ · n̂. (29)

We now wish to transform the Lorenz-gauge potentials into the Coulomb gauge via a gauge-transformation
function χ,

V (C)
m = V (L)

m − 1
c

∂χ

∂t
, A(C)

m = A(L)
m + ∇χ. (30)

Comparing eqs. (25) and (29), we see that,

χ =
1
2c

∂

∂t
p′ · n̂, (31)
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and hence,

A(C)
m = A(L)

m +
1
2c

∂

∂t
∇(p′ · n̂) ≈ m × n̂

R2
+

1
2c

∂

∂t
(p′ · ∇)n̂ =

m × n̂
R2

+
1
2c

∂

∂t

p′ − (p′ · n̂)n̂
R

(32)

Now,

∂p′

∂t
≈ a

c
×m ,

∂R
∂t

= −v, R
∂R

∂t
=

∂

∂t

R2

2
=

∂

∂t

R2

2
= R · ∂R

∂t
= −v ·R,

∂R

∂t
= −v · n̂,

∂

∂t

1
R

=
v · n̂
R2

,
∂n̂
∂t

=
∂

∂t

R
R

=
1
R

∂R
∂t

− R
R2

∂R

∂t
=

−v + (v · n̂)n̂
R

, (33)

where a = dv/dt is the present acceleration of the dipole. Finally, the Coulomb-gauge vector potential of
the moving dipole in the lab frame is,

A(C)
m ≈ m × n̂

R2
+

(v ×m · n̂)(v − (v · n̂)n̂)
2c2R2

+
a× m − (a ×m · n̂)n̂

2c2R
≈ m × n̂

R2
. (34)

Now that we have the potentials of a moving magnetic dipole to order 1/c2 in the Coulomb
gauge, we readily obtain the Lagrangian, the canonical momenta and the conserved en-
ergy/Hamiltonian for a system of electrical charges with magnetic moments,

L =
∑

i

miv
2
i

2
+

∑
i

miv
4
i

8c2
+

∑
i>j

ei

(
− ej

Rij
+

ej [vi · vj + (vi · n̂ij)(vj · n̂ij)]

2c2Rij

− n̂ij · (vj × mj)

cR2
ij

+
mj × n̂ij

cR2
ij

)
, (35)

pi = mivi +
miv

2
i

2c2
vi + ei

∑
j �=i

(
ej

2c2Rij
[vj + n̂ij(vj · n̂ij)] +

mj × n̂ij

cR2
ij

)
, (36)

and,

U =
∑

i

miv
2
i

2
+

∑
i

3miv
4
i

8c2
+

∑
i>j

ei

(
ej

Rij

+
ej [vi · vj + (vi · n̂ij)(vj · n̂ij)]

2c2Rij

n̂ij · (vj × mj)

cR2
ij

+
mj × n̂ij

cR2
ij

)
. (37)

A.3 Field Momentum for e+e− in Circular Motion

After these lengthy preliminaries, we find that the electromagnetic field momentum for an
e+e− in uniform circular motion has the same form (9) for the charges at rest,

PEM =
e+A+− + e−A−+

c
≈ − e2

cR2
[v− + n̂(v− · n̂)v+n̂(v+ · n̂)] +

e(m+ + m−) × n̂

cR2

=
e(m+ + m−) × n̂

cR2
=

E × (m+ + m−)

c
, (38)

where n̂ points from the electron to the positron, and E = −e n̂/R2 is the electric field due
to the electron at the location of the positron.
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B Forces On an e+e− Pair in Circular Motion

The potentials of a moving electron/positron in the Darwin approximation are,

V (C) =
e

R
+

n̂ · (v × m)

cR2
, A(C) =

e[v + (v · n̂)n̂]

2cR
+

m × n̂

R2
, (39)

and the corresponding electromagnetic fields are,16

E = −∇V (C) − ∂A(C)

∂ct
=

e n̂

R2
+

3[n̂ · (v × m)]n̂− v ×m

cR3

− e

2c2R

[
a + (a · n̂)n̂ +

3(v · n̂)2 − v2

R
n̂

]
− ṁ × n̂

cR2
+

m × v

cR3
, (40)

B = ∇× A(C) =
ev × n̂

cR2
+

3(n̂ · m)n̂−m

R3
, (41)

In general, the electric field is not along n̂, i.e., not along the line of centers of the electron
and positron.

We restrict our attention to electrons an positrons in uniform circular motion with radius
r = r/2, and with m+ = m− ≡ m ⊥ n̂. Then, the magnetic field at the electron or positron
(due to the positron or electron) is parallel to its magnetic moment, such that the torque
on this moment is zero, and ṁ± = 0. Further, v × m is parallel to n̂, so the Lorentz force
e(E+v/c×B) on the electron or positron is parallel to n̂. Also, the lab-frame electric dipole
moment p′ = v/c ×m is parallel to n̂, so the force on this moment, (p′ · ∇)E is parallel to
n̂. Finally, m · B = emv/cR2 − m2/r3, so the force ∇(m · B) on each magnetic dipole is
parallel to n̂.

The total force on the electron or positron is parallel to n̂, and to leading order is just
the Coulomb force e2/R2 = e2/4r2. All other force terms discussed above are of order 1/c2.
To a good approximation, the radial force equation is,

Fr = − e2

4r2
= −mev

2

r

v2

c2
=

e2

4mec2r
=

re

4r
, (42)

where me is the rest mass of the electron and re = e2/mec
2 = 2.8× 10−13 cm is the so-called

classical electron radius. For example, if r = 1 cm, then v/c ≈ 2.6×10−7 , and v ≈ 8000 cm/s.

C Lifetime of the e+e− Circular Motion

We have ignored electromagnetic radiation in the preceding. However, the e+e− system
emits energy, predominantly in the form of electric dipole radiation, at the rate,

dU

dt
= −2d̈2

3c3
= −2d2ω4

3c3
= −8e3r2v4

3c3r4
= −8e2cr2

e

3r4
, (43)

16The generals fields of a moving magnetic dipole have been given in [51].

9



noting that the electric dipole moment of the system is d = 2er. The energy of the system
is,

U = − e2

4r
,

dU

dt
=

e2

4r2

dr

dt
, (44)

such that,

r2 dr

dt
= −2cr2

e

3
, r3 = r3

0 − 2cr2
et. (45)

The radius of the e+e− system falls to zero in time,

t =
r3
0

2cr2
e

= 2 × 1014r3
0 s, (46)

for initial radius r0 of the orbit in cm. The lifetime is very long for r0 = 1 cm, but only about
10−10 s for r0 = 1

◦
A (which is roughly the lifetime of the ground state of positronium).
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