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1 Problem

Show that the surface charge density σ on a conducting ellipsoid,
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can be written,
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√
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, (2)

where Q is the total charge.
Show that if the charge distribution of the ellipsoid is projected onto any of its symmetry

planes, the result is independent of the extent of the ellipse perpendicular to the plane of
projection (i.e., σxy, the projection of σellipsoid on the x-y plane, is independent of parameter
c). Thus, the projection of the charge distribution of a conducting oblate or prolate spheroid
onto its equatorial plane is the same as the projected charge distribution of a conducting
sphere.

By considering a thin conducting circular disk of radius a as a special case of an ellipsoid,
show that its surface charge density (summed over both sides) can be written as,

σcircular disk =
V0

2π2
√

a2 − r2
, (3)

where the electric potential V0 of the disk is related by V0 = πQ/2a.
Show also that if the charge distribution on the conducting ellipsoid is projected onto

any of the coordinate axes, the result is uniform (i.e., the charge distribution projected
onto the x-axis is σx = Q/2a). In particular, we expect that the charge distribution along
a conducting needle will be uniform, since the needle can be considered as the limit of a
conducting ellipsoid, two of whose three axes have shrunk to zero.

2 Solution

The charge distribution (3) on a conducting ellipsoid can be deduced in a variety of ways
[1]-[7]. We record here a highly geometric derivation following Thomson (1869) [2].1,2

1The charge distribution on the surface of a conducting, prolate spheroid was deduced by Green (1828),
pp. 68-69 of [8], by noting that the equipotentials of a uniformly charged needle are spheroids. He stated
that his results “agree with what has been long known”.

2Thomson’s method was stated in a textbook by Murphy in 1833 [1] (with no equations), which suggests
that it was already well known.
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The starting point is the “elementary” result that the electric field is zero in the interior
of a spherical shell of any thickness that has a uniform volume charge density between the
inner and outer surfaces of the shell. A well-known geometric argument (due to Newton,
book 1, prop. 70, p. 218 of [9]) for this is illustrated in Fig. 1.

Figure 1: For any point r0 in the interior of a uniformly charged shell of charge,
the axis of a narrow bicone intercepts the inner surface of the shell at points r1

and r2. The corresponding areas on the inner surface of the shell intercepted
by the bicone are A1 and A2. In the limit of small areas, A1/R

2
01 = A2/R

2
02.

The electric field at point r0 in the interior of the shell due to a lamina of thickness δ
and area A1 centered on point r1 that lies within a narrow cone whose vertex is point 0 is
given by,

E1 =
ρ dVol1

R2
01

R̂01, (4)

where ρ is the volume charge density, dVol1 = A1δ, R01 = r0−r1, and the center of the sphere
is taken to be at the origin. Likewise, the electric field from a lamina of area A2 centered
on point r2 defined by the intercept with the shell of the same narrow cone extended in the
opposite direction (forming a bicone) is given by,

E2 =
ρ dVol2

R2
02

R̂02, (5)

In the limit of bicones of small half angle, the two parts of the bicone as truncated by the
shell are similar, so that,

A1

R2
01

=
A2

R2
02

,
dVol1
R2

01

=
dVol2
R2

02

, (6)

and, of course, R̂02 = −R̂01. Hence E1 + E2 = 0. Since this construction can be applied to
all points in the material of the spherical shell, and for all pairs of surface elements subtended
by (narrow) bicones, the total electric field in the interior of the shell is zero.
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We now reconsider the above argument after arbitrary scale transformations have been
applied to the rectangular coordinate axes,

x → k1x, y → k2y, z → k3z. (7)

A spherical shell of radius s is thereby transformed into an ellipsoid,
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3

= 1. (8)

As parameter s is varied, one obtains a set of similar ellipsoids, centered on the origin.
A small volume element obeys the transformation,

dVol = dxdydz → k1k2k3 dxdydz = k1k2k3 dVol. (9)

The three points 0, 1, and 2 in Fig. 1 lie along a line, so that,

R01 = r0 − r1 = CR02 = C(r0 − r2), (10)

where C is a (negative) constant. This relation is invariant under the scale transformation
(7), so that together with eq. (9) the relation,

dVol1
R2

01

=
dVol2
R2

02

, (11)

is also invariant. Hence, if the ellipsoidal shell, which is the transform of the spherical shell
of Fig. 1, contains a uniform volume charge density, the relation E1 + E2 = 0 remains true
at the vertex of any bicone in the interior of the shell, which implies that the total electric
field is zero there.3

This proof is based on the premise that the ellipsoidal shell is bounded by two similar
ellipsoids, and that the volume charge density in the shell is uniform.

If we let the outer ellipsoid of the shell approach the inner one, always remaining similar
to the latter, we reach a configuration that is equivalent to a thin, conducting ellipsoid, since
in both cases the electric field is zero in the interior. Hence, the surface charge distribution
on a thin, conducting ellipsoid must the same as the projection onto its surface of a uniform
charge distribution between that surface and a similar, but slightly larger ellipsoidal surface.

The charge σ per unit area on the surface of a thin, conducting ellipsoid is therefore
proportional to the thickness, which we write as δd, of the ellipsoidal shell formed by that
surface and a similar, but slightly larger ellipsoid,

σ = ρ δd, (12)

where constant ρ is to be determined from a knowledge of the total charge Q on the con-
ducting ellipsoid.

3This result was obtained by Newton (for the gravtitational attraction) at points within spheroids shells,
book 1, prop. 91, cor. 3, p. 239 of [9]. The results for ellipsoidal shells may have first been given by Ivory,
p. 364 of [10] (1809).
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The thickness δd of a thin ellipsoidal shell at some point on its inner surface is the distance
between the plane that is tangent to the inner surface at the specified point, and the plane
that is tangent to the outer surface at the point similar to the specified point. These planes
are parallel since the ellipsoids are parallel. In particular, if the semimajor axes of the inner
ellipsoid are called a, b, and c, then those of the outer ellipsoid can be written a + δa, b + δb
and c+δc. Let the (perpendicular) distance from the plane tangent to the specified point on
the inner ellipsoid to its center be called d, and the corresponding distance from the outer
tangent plane be d+ δd, so that δd is the desired thickness of the shell at the specified point.
Then, the condition of similarity is that,

δa

a
=

δb

b
=

δc

c
=

δd

d
. (13)

Since the volume of an ellipsoid with semimajor axes a, b, and c is 4πabc/3, the volume
of the ellipsoidal shell is 4π(a+δa)(b+δb)(c+δc)/3−4πabc/3 = 4πabc(δd/d), using eq. (13).
As the constant ρ has an interpretation as the uniform charge density within the material
of the ellipsoidal shell, we find that the total charge Q on the conducting ellipsoid is related
by,

Q = ρ Volshell =
4πabc

d
ρ δd, (14)

and hence,

σ = ρ δd =
Qd

4πabc
. (15)

It remains to find an expression for the distance d to the tangent plane. If we write the
equation for the ellipsoid in the form,

f(x, y, z) =

√
x2

a2
+

y2

b2
+

z2

c2
− 1 = 0, (16)

then the gradient of f is perpendicular to the tangent plane. Thus, the vector d from the
center of the ellipsoid to the tangent plane is proportional to ∇f . That is,

d ∝ ∇f =
( x

a2
,

y

b2
,

z

c2

)
, (17)

noting that
√

x2/a2 + y2/b2 + z2/c2 = 1 on the ellipsoid. The unit vector d̂ is therefore,

d̂ =

(
x
a2 , y

b2
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c2

)
√
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. (18)

The magnitude d of the vector d is related to the vector r = (x, y, z) of the specified point
on the ellipse by,4

d = r · d̂ =
x2

a2 + y2

b2
+ z2

c2√
x2

a4 + y2

b4
+ z2

c4

=
1√

x2

a4 + y2

b4
+ z2

c4

. (19)

4Nov. 15, 2019. It was pointed out in [11] that d = 1/(d̂ ·∇f) = 1/df/du =
∫

df δ(f)/df/du =
∫

du δ(f),
where u is a coordinate perpendicular to surface of the ellipsoid, with u = 0 on the surface, and δ(f) is the
Dirac delta function.
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At length, we have found the charge density on the surface of a conducting ellipsoid to
be,

σellipsoid =
Q

4πabc
√

x2

a4 + y2

b4
+ z2

c4

, (20)

where Q is the total charge.

To deduce the projection of the charge distribution of the conducting ellipse onto one of
its symmetry planes, say the x-y plane, note that a projected area element dx dy corresponds
to area dA on the surface of the ellipsoid that is related by,

dx dy = dA · ẑ = dA dz, (21)

where the unit vector d̂ that is normal to the surface of the ellipsoid at the point (x, y) is
given by eq. (19). Thus,

dA =
dx dy

d̂z

=
c2 dx dy

z

√
x2

a4
+

y2

b4
+

z2

c4
. (22)

The charge projected onto the x-y plane from both z > 0 and z < 0 is,

dQxy = 2σellipsoiddA =
Qc dx dy

2πabz
=

Q dx dy

2πab
√

1 − x2

a2 − y2

b2

, (23)

combining eqs. (1), (20) and (22). The projected charge density (due to both halves of the
ellipsoid), σxy = dQxy/dx dy, is independent of the parameter c that specifies the size of the
ellipsoid in z. For example, the charge distributions of a sphere, a disk, and both an oblate
and prolate spheroid, all of the same equatorial diameter, are the same when projected onto
the equatorial plane.

If the project the charge dQxy of eq. (23) onto the x axis, the result is,

dQx =
Q dx

2πa

∫ √
b2− b2x2

a2

−
√

b2− b2x2

a2

dy√
b2 − b2x2

a2 − y2

=
Q

2a
dx, (24)

which is uniform in x! In particular, the uniform charge distribution on a conducting sphere
projects to a uniform charge distribution on any diameter; and the charge distribution is
uniform along a conducting needle that is the limit of conducting ellipsoid.

The case of a thin, conducting elliptical disk in the x-y plane can be obtained from
eq. (20) by letting c go to zero.5 For this we note that eq. (16) for a general ellipsoid permits
us to write,

c

√
x2

a4
+

y2

b4
+

z2

c4
=

√
c2

(
x2

a4
+

y2

b4

)
+ 1 − x2

a2
− y2

b2
→

√
1 − x2

a2
− y2

b2
. (25)

5For a rather different method of solution, see [12].
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The charge density on each side of a conducting elliptical disk is therefore,

σelliptical disk =
Q

4πab
√

1 − x2

a2 + y2

b2

. (26)

The charge density on each side of a conducting circular disk of radius a follows imme-
diately as,

σcircular disk =
Q

4πa
√

a2 − r2
, (27)

where r2 = x2 + y2. Such a disk has potential V0, which can be found by calculating the
potential at the center of the disk according to,

V0 = V (r = 0, z = 0) =

∫ a

0

2σ(r)

r
2πr dr =

Q

a

∫ a

0

dr√
a2 − r2

=
πQ

2a
. (28)

Hence, a conducting disk of radius a at potential V0 has charge density,

σcircular disk =
V0

2π2
√

a2 − r2
. (29)
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