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This note applies the formalism of a recent paper by Peatross et al. [1] to the question
of energy flow in a negative-group-velocity wave, such as demonstrated by Wang et al. [2].

1 Classical Oscillator Model of a Negative-Group-

Velocity Medium

We consider a linear dielectric medium extending from z = 0 to z = a. The medium
is characterized by two spectral lines, ω1,2 = ω0 ± Δ/2, both of oscillator strength −1 to
indicate that the populations of both lines are inverted, with damping constants γ1 = γ2 = γ.
In a classical model of the (dilute) medium as consisting of electrons tied to fixed lattice
points by springs of frequencies ω1 and ω2, the susceptibility χ is given by,

χ = Nα = −Ne2

m

(ω0 − Δ/2)2 − ω2 + iγω

((ω0 − Δ/2)2 − ω2)2 + γ2ω2
− Ne2

m

(ω0 + Δ/2)2 − ω2 + iγω

((ω0 + Δ/2)2 − ω2)2 + γ2ω2

≈ −ω2
p

4π

ω2
0 −Δω0 − ω2 + iγω

(ω2
0 − Δω0 − ω2)2 + γ2ω2

− ω2
p

4π

ω2
0 + 2Δω0 − ω2 + iγω

(ω2
0 + Δω0 − ω2)2 + γ2ω2

, (1)

where the approximation is obtained by the neglect of terms in Δ2 compared to those in
Δω0. In this, ωp is the plasma frequency of the medium, given by,

ω2
p =

4πNe2

m
, (2)

where N is the number density of atoms, and e and m are the charge and mass of an electron.
Gaussian units are employed in this note.

The index of refraction of the medium is given by,

n(ω) =
√

ε =
√

1 + 4πχ ≈ 1 + 2πχ

≈ 1 − ω2
p

2

[
ω2

0 − Δω0 − ω2 + iγω

(ω2
0 − Δω0 − ω2)2 + γ2ω2

+
ω2

0 + Δω0 − ω2 + iγω

(ω2
0 + Δω0 − ω2)2 + γ2ω2

]
. (3)

This illustrated in Figure 1.
The index at the central frequency ω0 is,

n(ω0) ≈ 1 − i
ω2

pγ

(Δ2 + γ2)ω0
≈ 1 − i

ω2
p

Δ2

γ

ω0
, (4)

where the second approximation holds when γ � Δ. The electric field of a continuous probe
wave then propagates according to,

E(z, t) = ei(kz−ω0t) = eiω0(n(ω0)z/c−t) ≈ ez/[Δ2c/γω2
p]eiω0(z/c−t). (5)
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Figure 1: The real and imaginary parts of the index of refraction in a medium
with two spectral lines that have been pumped to inverted populations. The
lines are separated by angular frequency Δ and have widths γ = 0.4Δ.

From this we see that at frequency ω0 the phase velocity is c, the speed of light in vacuum,
and the medium has an amplitude gain length Δ2c/γω2

p.
In a medium of index of refraction n(ω), the dispersion relation can be written as,

k =
ωn

c
, (6)

where k is the wave number. The group velocity is then given by,

vg = Re

[
dω

dk

]
=

1

Re[dk/dω]
=

c

Re[d(ωn)/dω]
=

c

n + ωRe[dn/dω]
. (7)

To obtain the group velocity at frequency ω0, we need the derivative,

d(ωn)

dω

∣∣∣
ω0

≈ 1 − 2ω2
p(Δ

2 − γ2)

(Δ2 + γ2)2
, (8)

where we have neglected terms in Δ and γ compared to ω0. From eq. (7), we see that the
group velocity can be negative if,

γ � Δ <
√

2ωp, (9)

in which case,

vg ≈ − c

2

Δ2

ω2
p

. (10)

[For finite γ, a more detailed condition can be deduced.]
A value of vg ≈ −c/310 as in the experiment of Wang corresponds to Δ/ωp ≈ 1/12. In

this case, the gain length Δ2c/γω2
p was approximately 40 cm.
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2 Propagation of a Monochromatic Plane Wave

To illustrate the optical properties of a medium with negative group velocity, we consider
the propagation of an electromagnetic wave through it. The medium extends from z = 0
to a, and is surrounded by vacuum. Because the index of refraction (3) is near unity in the
frequency range of interest, we ignore reflections at the boundaries of the medium.

A linearly polarized monochromatic plane wave of frequency ω and incident from z < 0
propagates with phase velocity c in vacuum. Its electric field can be written as,

E(z, t) = Eω(z, t)x̂ = E0e
iωz/ce−iωtx̂ (z < 0). (11)

The corresponding magnetic field is,

B(z, t) = Bω(z, t)ŷ = E0e
iωz/ce−iωtŷ (z < 0). (12)

Inside the medium this wave propagates with phase velocity c/n(ω) according to,

Eω(z, t) = E0e
iωnz/ce−iωt (0 < z < a), (13)

where the amplitude is unchanged since we neglect the small reflection at the boundary
z = 0. When the wave emerges into vacuum at z = a, the phase velocity is again c, but it
has accumulated a phase lag of (ω/c)(n − 1)a, and so appears as,

Eω(z, t) = E0e
iωa(n−1)/ceiωz/ce−iωt = E0e

iωan/ce−iω(t−(z−a)/c) (a < z). (14)

It is noteworthy that a monochromatic wave for z > a has the same form as that inside the
medium if we make the frequency-independent substitutions,

z → a, and t → t − z − a

c
. (15)

Since an arbitrary waveform can be expressed in terms of monochromatic plane waves via
Fourier analysis, we can use these substitutions to convert any wave in the region 0 < z < a
to its continuation in the region a < z.

A general relation can be deduced in the case where the second and higher derivatives of
ωn(ω) are very small. We can then write,

ωn(ω) ≈ ω0n(ω0) +
c

vg
(ω − ω0), (16)

where vg is the group velocity for a pulse with central frequency ω0. Using this in eq. (13),
we have,

Eω(z, t) ≈ E0e
iω0z(n(ω0)/c−1/vg)eiωz/vge−iωt (0 < z < a). (17)

In this approximation, the Fourier component Eω(z) at frequency ω of a wave inside the
gain medium is related to that of the incident wave by replacing the frequency dependence
eiωz/c by eiωz/vg , i.e., by replacing z/c by z/vg, and multiplying by the frequency-independent
phase factor eiω0z(n(ω0)/c−1/vg). Then, using transformation (15), the wave that emerges into
vacuum beyond the medium is,

Eω(z, t) ≈ E0e
iω0a(n(ω0)/c−1/vg)eiω(z/c−a(1/c−1/vg))e−iωt (a < z). (18)

The wave beyond the medium is related to the incident wave by multiplying by a frequency-
independent phase, and by replacing z/c by z/c− a(1/c− 1/vg) in the frequency-dependent
part of the phase.
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3 Propagation of a Pulse

The transformations between the monochromatic incident wave (11) and its continuation in
and beyond the medium, (17) and (18), imply that an incident wave,

E(z, t) = f(z/c − t) =

∫ ∞

−∞
dω Eω(z)e−iωt (z < 0), (19)

whose Fourier components are given by,

Eω(z) =
1

2π

∫ ∞

−∞
E(z, t)eiωtdt, (20)

propagates as,

E(z, t) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(z/c − t) (z < 0),

eiω0z(n(ω0)/c−1/vg)f(z/vg − t) (0 < z < a),

eiω0a(n(ω0)/c−1/vg)f(z/c − t − a(1/c − 1/vg)) (a < z).

(21)

As a particular example, we consider a Gaussian pulse of temporal length τ centered on
frequency ω0 (the carrier frequency), for which the incident waveform is,

E(z, t) = E0e
−(z/c−t)2/2τ2

eiω0z/ce−iω0t (z < 0), (22)

Inserting this in eq. (21) we find,

E(z, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E0e
−(z/c−t)2/2τ2

eiω0(z/c−t) (z < 0),

E0e
−(z/vg−t)2/2τ2

eiω0(n(ω0)z/c−t) (0 < z < a),

E0e
iω0a(n(ω0)−1)/ce−(z/c−a(1/c−1/vg)−t)2/2τ2

eiω0(z/c−t) (a < z).

(23)

The factor eiω0a(n(ω0)−1)/c in eq. (23) for a < z becomes eω2
pγa/Δ2c using eq. (4), and repre-

sents a small gain due to traversing the negative-group-velocity medium. In the experiment
of Wang et al. [2] this factor was only 1.16.

According to eq. (23), the peak of the Gaussian pulse emerges from the medium at
z = a at time t = a/vg. If the group velocity is negative, the pulse emerges from the medium
before it enters at t = 0! Inside a negative-group-velocity medium, an (anti)pulse propagates
backwards in space from z = a at time t = a/vg < 0 to z = 0 at time t = 0, at which point
it appears to annihilate the incident pulse.

The forms (21) and (23) hold only over the frequency interval for which eq. (16) applies.
For the medium described in sec. 1, the linear approximation to ωn(ω) is only good over a
frequency interval about ω0 of order Δ, and so eq. (23) for the pulse after the gain medium
applies only for pulsewidths,

τ >∼
1

Δ
. (24)
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By considering the second-order term in eq. (16) it can also be shown that eq. (23) holds
only for pulses with width ct >∼ a.

In vacuum, the electric and magnetic fields of a plane wave have equal strengths, but
inside a dielectric medium the frequency components of the fields obey Bω = n(ω)Eω. In
general, this implies that the expressions for E(z, t) for 0 < z < a in eqs. (16) and (23)
do not hold for the magnetic field as well. However, for the example of a Gaussian pulse
inside a negative-group-velocity medium, the index n differs from unity by at most 10−6 over
the bandwidth of the pulse, and to good accuracy the electric and magnetic fields are equal
inside the medium as well as in vacuum.

4 Energy-Flow Velocity via the Poynting Vector

A simple definition of energy-flow velocity based on the Poynting vector is1

vE =
S

ufield
= 2c

E × B

E2 + B2
. (25)

Note that the magnitude of v is bounded by,

v = |v| ≤ c
2EB

E2 + B2
≤ c , (26)

and that the maximal v = c only occurs when E = B and E ⊥ B.
The energy density in the electromagnetic wave in the medium, whose permeability is

taken to be unity, is,

ufield =
εE2

8π
+

B2

8π
≈ E2

4π
, (27)

since the dielectric constant is very close to unity over the frequency bandwidth of interest.
The Poynting vector is,

S =
c

4π
E ×B ≈ c

4π
E2ẑ. (28)

Since the dielectric constant and the index of refraction are very close to unity in the
negative-group-velocity medium, eqs. (27)-(25) imply that vE ≈ c. That is, the definition
(25) seems not to provide any insight as to the apparent complexity of pulse propagation in
a negative-group-velocity medium.

5 Energy-Flow Velocity via the Pulse Centroid

Peatross et al. proposed another definition of energy-flow velocity [1],

vE =

∫
S dVol∫

utotal dVol
=

∂ 〈r〉
∂t

, (29)

1The idea that an energy-flux vector is the product of energy density and energy-flow velocity seems
to be due to Umov [3] (1874), based on Euler’s continuity equation [4] for mass flow, ∇ · (ρv) = −∂ρ/∂t.
The energy-flow velocity (25) appeared on p. 392 of the textbook [5] and on p. 794 of [6]. See also[7]-[10].
Nonstandard definitions are considered in [11]-[13].
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where,

〈r〉 =

∫
rutotal dVol∫
utotal dVol

. (30)

The second form of eq. (29) is obtained on integration by parts and use of total energy
conservation,

∇ · S +
∂utotal

∂t
= 0. (31)

A key feature in the above definition is the inclusion of all forms of energy, even when
the only flow of energy is due to an electromagnetic wave.

This definition of energy flow derates the velocity of the pulse by including other forms
of energy as well.

For example, a system containing an electromagnetic pulse of energy upulse moving with
v = c and some energy ustatic that is considered to be at rest would have energy flow velocity
cupulse/(upulse + ustatic) < c.

The motivation for this definition seems to have been an awareness that in some cases
the pulse interacts with the rest of the system so as to rearrange energy not initially in the
pulse.

However, this definition has the defect that the energy velocity is changed by the inclusion
of more noninteracting energy in the system, even though this does not change the pulse
propagation in any way that I would call meaningful.

Perhaps because of this, Peatross et al. did not seem to make any use of the definition
(31), although discussion of it occupies most of their sections 2 and 3.

6 Energy Flow Velocity via the Field Energy Density

In their sec. 5, Peatross et al. give extensive discussion of the quantity,

〈r〉 =

∫
rufield dVol∫
ufield dVol

, (32)

even though they warn us in their sec. 3 to be wary of its significance.
As an example, we apply this definition to the case of a Gaussian pulse (23) passing

though a negative group velocity medium. We first make the unphysical assumption that
the pulse length is much less than length a of the medium. Then, for times t < a/vg and
t > 0 there is only one (narrow) pulse, which is in vacuum. But, for the time interval
a/vg < t < 0 there are three pulses present, all containing the same electromagnetic field
energy; in addition to both vacuum pulses a third pulse moves inside the medium with
velocity vg < 0. The pulse centroid moves with velocity c according to,

〈z(t)〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ct (t < a/vg),

2c+vg

3
t + a

3
(1 − c/vg) (a/vg < t < 0),

ct + a(1 − c/vg) (t > 0).

(33)
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One might now consider the velocity,

d 〈z(t)〉
dt

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c (t < a/vg),

2c+vg

3
(a/vg < t < 0),

c (t > 0).

(34)

For no negative value of the group velocity in the medium is this measure of pulse velocity
greater than c. However, for vg < −2c/3, the pulse velocity is negative during the interval
a/vg < t < 0, and positive at other times.

While there is nothing inconsistent in this definition, it does not seem to clarify must
about the situation.

7 Exchange Energy

The energy of interaction of the wave with the medium is called the exchange energy in [1],
and is defined to be the time integral of the power E · jpol, where the polarization current
density is given by,

jpol =
∂P

∂t
, (35)

where P is the dielectric polarization density. Then, the exchange energy is,

uexchange(z, t) =

∫ t

−∞
dtE(z, t) · jpol(z, t) =

∫ t

−∞
dtE(z, t) · ∂P(z, t)

∂t
. (36)

The frequency components of the polarization are related to those of the electric field by,

Pω = χωEω. (37)

Peatross et al. argued that when describing the physical situation at time t, the Fourier
analysis should involve only the history prior to that time:

Eω(z) =
1

2π

∫ t

−∞
E(z, t)eiωtdt, (38)

and hence,

Pω(z) =
1

2π

∫ t

−∞
P (z, t)eiωtdt =

χω

2π

∫ t

−∞
E(z, t)eiωtdt, (39)

Of course,

E(z, t) =

∫ ∞

−∞
Eω(z)e−iωtdω, (40)

so,

uexchange(z, t) =

∫ t

−∞
dt

∫ ∞

−∞
Eω(z)e−iωtdω

∫ ∞

−∞
−iω′χω′Eω′(z)e−iω′tdω′
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= −i

∫ ∞

−∞
Eω(z)dω

∫ ∞

−∞
ω′χω′Eω′(z)dω′

∫ t

−∞
e−i(ω+ω′)tdt

= −i

∫ ∞

−∞
Eω(z)dω

∫ ∞

−∞
ω′χω′Eω′(z)dω′

∫ t

−∞
e−i(ω+ω′)tdt

= −2πi

∫ ∞

−∞
Eω(z)dω

∫ ∞

−∞
ω′χω′Eω′(z)δ(ω + ω′)dω′

= 2πi

∫ ∞

−∞
ωχω|Eω(z)|2dω

= 2π

∫ ∞

−∞
ωIm(χω)|Eω(z)|2dω, (41)

where Eω is given by eq. (38). Further justification of eq. (41) is given in [1].
WangFor our example of a negative-group-velocity medium, the imaginary part of the

susceptibility (1) is negative,

Im(χ) ≈ −γωω2
p

4π

(
1

(ω2
0 −Δω0 − ω2)2 + γ2ω2

+
1

(ω2
0 + Δω0 − ω2)2 + γ2ω2

)
, (42)

and hence uexchange is also. This confirms the qualitative description that the pulse has
extracted energy from the medium to produce the pulse in region z > a earlier than would
be possible in vacuum.

The phenomenon of negative-group-velocity waves as demonstrated by Wang et al. [2]
requires that the bandwidth of the pulse be restricted such that Re(χ) varies linearly with
frequency. According to eq. (1) this requires |ω − ω0| <∼ Δ. Over this interval, Im(χ) can
be approximated by,

Im(χ(ω0)) = − γω2
p

2πω0(Δ2 + γ2)
≈ − γω2

p

2πω0Δ2
(43)

Inserting eq. (43) in eq. (41), the exchange energy is given by,

uexchange(z, t) ≈ −2πω0

γω2
p

2πω0Δ2

∫ ∞

−∞
|Eω(z)|2dω

= −γω2
p

Δ2

∫ ∞

−∞
|Eω(z)|2dω

= − γω2
p

4π2Δ2

∫ ∞

−∞
dω

∫ t

−∞
E(z, t′)eiωt′dt′

∫ t

−∞
E�(z, t′′)e−iωt′′dt′′

= − γω2
p

4π2Δ2

∫ t

−∞
E(z, t′)dt′

∫ t

−∞
E�(z, t′′)dt′′

∫ ∞

−∞
eiω(t′−t′′)dω

= − γω2
p

2πΔ2

∫ t

−∞
E(z, t′)dt′

∫ t

−∞
E�(z, t′′)δ(t′ − t′′)dt′′

= − γω2
p

2πΔ2

∫ t

−∞
|E(z, t′)|2dt′

= −γω2
pE

2
0

2πΔ2

∫ t

−∞
e−(z/vg−t′)2/τ2

dt′ . (44)
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It appears that the exchange energy (44) will decrease monotonically with time.
Let us consider the exchange energy uexchange(z,∞) after the pulse has passed. Then,

uexchange(z,∞) = −γω2
pE

2
0

2πΔ2

∫ ∞

−∞
e−(z/vg−t′)2/τ2

dt′ = −γω2
pE

2
0τ

2
√

πΔ2
. (45)

The total exchange energy in the medium that extends from z = 0 to a is,

uexchange(∞) = −γω2
pE

2
0τa

2
√

πΔ2
. (46)

Note that the energy of the incident pulse is,

uin =
E2

0

4π

∫ ∞

−∞
e−(z/c−t′)2/τ2

dz =
E2

0cτ

4
√

π
. (47)

Hence,

uexchange(∞) =
2γω2

pa

cΔ2
uin . (48)

In the discussion just after eq. (23) we saw that the electric field was amplified by the factor
exp(γω2

pa/cΔ2) by the gain medium. The pulse energy is therefore amplified by the factor
exp(2γω2

pa/cΔ2) ≈ 1 + 2γω2
pa/cΔ2, so the energy gained is,

ugain =
2γω2

pa

cΔ2
uin = −uexchange . (49)

The result (49) is a reassuring validation of conservation of energy, yet it points out that
an interesting question remains as to the interpretation of Wang’s experiment. Namely, if it
is really possible for three copies of a pulse to exist at certain times in and about a negative
group velocity medium, where does the energy for these pulses come from? (Note that in
Wang’s experiment, the advance of the pulse was so slight that one would not claim that
“three copies of the pulse” existed simultaneously. Such claims come from the assumption
that eq. (23) is an accurate description of reality.)

Since the revival of interest in pulse propagation near absorption lines by Garret and
Macumber [14], it has been common to suggest that pulses can be retarded or advanced by
differential absorption or gain for the leading and trailing edges of the pulses [15, 16]. For
experiments such as [17, 18] that involved strong dispersion, such a description is indeed
appropriate. However, this is not the case for Wang’s experiment, where the gain is actually
very weak in the relevant frequency band, which lies between the two pumped frequencies.
This was remarked in a qualitative way by Wang et al. [2], which is confirmed quantitatively
by eq. (49).

So what is going on in Wang’s case? I believe that answer is that Wang’s experiment
should be regarded as an example of quantum-mechanical barrier penetration, for which an
energy uncertainty principle, δEδt ≈ �, permits an apparent violation of energy conservation
for the short characteristic time δt = a/ |vg| during which the pulse crosses the barrier.

This interpretation can be made on the basis of a classical analysis of the pulse prop-
agation, plus one fact from quantum mechanics: the Einstein relation that E = �ω for
photons.
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Equation (23) was deduced on the assumption that the index of refraction varied linearly
with frequency. This is indeed a reasonable approximation over the central portion of the
bandwidth of the pulse in Wang’s experiment, as sketched in Fig. 1, but it fails for the tails
of the frequency distribution that approach the pumped frequencies.

Therefore, it is relevant to consider at least the second-order term in a series expansion
of the index of refraction. When this is done, one finds that a Gaussian pulse will propagate
without significant distortion only if its rms width τ is greater than the time δt it takes
the pulse to cross the gain medium. Also, the bandwidth τ >∼ 1/Δ, where Δ is frequency
separation of the two pumped spectral lines. The narrowest pulse for which the effects of
Wang’s experiment might be clearly observed has δt ≈ τ ≈ 1/Δ.

The time interval during which there appears to be “extra” field energy in the combination
of the input pulse, the output pulse, and the backwards-propagating pulse inside the gain
medium is δt. The amount of “extra” energy is roughly that of the input pulse, uin as given
by eq. (47). We can also say that uin = n�ω0, where n is the number of photons in the pulse
whose central angular frequency is ω0. During the time δt ≈ τ ≈ 1/Δ during which these
photons are crossing the gain medium, their energy is uncertain by δE ≈ �/δt ≈ �Δ. The
uncertainty in a coherent pulse of n photons is then nδE ≈ n�Δ = (Δ/ω0)uin � uin. That
is, my claim seems to be wrong!

References

[1] J. Peatross, S.A. Glasgow and M. Ware, The Role of Group Velocity in Tracking Field
Energy of Broadband Pulses in Linear Dielectrics, submitted to Am. J. Phys. (Jan.
2001); revised version published as M. Ware, S.A. Glasgow and J. Peatross, Role of
group velocity in tracking field energy in linear dielectrics, Opt. Expr. 9, 506 (2001),
http://kirkmcd.princeton.edu/examples/EM/ware_oe_9_506_01.pdf

[2] L.J. Wang, A. Kuzmich and A. Dogariu, Gain-assisted superluminal light propagation,
Nature 406, 277 (2000), http://kirkmcd.princeton.edu/examples/optics/wang_nature_406_277_00.pdf

[3] N. Umow, Ableitung der Bewegungsgleichungen der Energie in continuirlichen Körpern,
Zeit. Math. Phys. 19, 418 (1874),
kirkmcd.princeton.edu/examples/EM/umow_zmp_19_97,418_74.pdf

kirkmcd.princeton.edu/examples/EM/umov_theorem.pdf
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