






































(Note added Nov. 1, 2003) 

The Present Situation In Quantum Mechanics 

Erwin Schroedinger 

A translation of Schroedingers "cat paradox" paper"  

Translator: John D. Trimmer 

http://www.emr.hibu.no/lars/eng/cat/ 

 

This translation was originally published in Proceedings of the American Philosophical 
Society, 124, 323-38. [And then appeared as Section I.11 of Part I of Quantum Theory 
and Measurement (J.A. Wheeler and W.H. Zurek, eds., Princeton university Press, New 
Jersey 1983).] 

5. Are the Variables Really Blurred? 

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along 
with the following device (which must be secured against direct interference by the cat): 
in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in 
the course of the hour one of the atoms decays, but also, with equal probability, perhaps 
none; if it happens, the counter tube discharges and through a relay releases a hammer 
which shatters a small flask of hydrocyanic acid. If one has left this entire system to itself 
for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The 
psi-function of the entire system would express this by having in it the living and dead cat 
(pardon the expression) mixed or smeared out in equal parts.  

It is typical of these cases that an indeterminacy originally restricted to the atomic domain 
becomes transformed into macroscopic indeterminacy, which can then be resolved by 
direct observation. That prevents us from so naively accepting as valid a "blurred model" 
for representing reality. 

 

 



































































(Noted added Nov. 3, 2003)

A moral of this story is that the wave function of an entangled state cannot
be written as the tensor product of states of its components:

ψentangled �= ψψ′.

As a further example of this principle, consider a variant of the setup on
slide 48 in which the beam splitter is in place in interferometer 1, but the 2nd

interferometer is absent and the 2nd photon is never observed. We might be

tempted to argue that since the state of the 2nd photon is never observed, the

components of its wave function ψ′ = (ψ1′ + ψ2′)/
√

2 can be taken as equal:
ψ1′ = ψ2′ = 1.

If so, the wave function ψ for the 2-photon system could be written as,

ψ =
1√
2

(ψ1ψ1′ + ψ2ψ2′) =
1√
2

[
1√
2

(ψA + ψB) +
1√
2

(ψB − ψA)

]
= ψB.

Then, we always observe a photon in detector B, and never in detector A

(as was found to be the case for a single interferometer 5 slides ago).

Can this result actually hold?

If the 2nd photon is observed, we have shown that the first photon will be

observed in detectors A and B with 50% probability. If in a set of experiments
the first photon is only found in detector B, the above analysis would imply

that the 2nd photon was never observed, even at times arbitrarily long after

the first photon was observed. This appears to contradict our freedom to

make a delayed choice to observe the 2nd photon.

Even though the 2nd photon is not observed, a proper description of the

entangled wave function of the two-photon system must take into account

the possibility that if the photon were observed, different results would be
possible. That is, we should write ψ1′ = ψA′ and ψ2′ = ψB′ where the states

ψA′ and ψB′ are distinguishable. Then, as discussed on the previous slide,

the wave function for the system should be written as,

ψ =
1

2
(ψAψA′ + ψAψB′ + ψBψA′ + ψBψB′) ,

from which we conclude that if we only observe photon 1 it will be found in

detector A with 50% probability, and of course in detector B with the same

probability.
An entangled 2-photon state does not behave like a pair of 1-photon states.



The No-Cloning Theorem (added June 9, 2022)

Around the time of my 1981 Colloquium, I received a preprint from Nick
Herbert,1 which noted that if copies of one of an entangled pair of photons

could be made in a “laser gain amplifier”, then superluminal signaling would

be possible in a variant of the configuration on my slides 48-49.
But, I missed the opportunity to deduce that this scheme won’t work

because an (unknown) quantum state cannot be copied exactly. This factoid

was not known in 1981, but was quickly demonstrated by several authors.2

1Later published as N. Herbert, FLASH: A Superluminal Communicator Based Upon a New Kind of
Quantum Measurement, Found. Phys. 12, 1171 (1982),
http://kirkmcd.princeton.edu/examples/QM/herbert_fp_12_1171_82.pdf.

2W.K. Wootters and W.R. Zurek, A single quantum cannot be cloned, Nature 299, 802 (1982),
http://kirkmcd.princeton.edu/examples/QM/wootters_nature_299_802_82.pdf
D. Dieks, Communications by EPR Devices, Phys. Lett. A 92, 271 (1982),
http://kirkmcd.princeton.edu/examples/QM/dieks_pl_a92_271_82.pdf
P.W. Milonni and M.L. Hardies, Photons Cannot Always Be Replicated, Physics Letters 92A, 321 (1982),
http://kirkmcd.princeton.edu/examples/QM/milonni_pl_a92_321_82.pdf
The essence of the no-cloning theorem had been demonstrated earlier, but was little noticed; J.L. Park, The
Concept of Transition in Quantum Mechanics, Found. Phys. 1, 23 1970),
http://kirkmcd.princeton.edu/examples/QM/park_fp_1_23_70.pdf



Postscript: Mar. 21, 2013
Alain Aspect gave a
colloquium at Princeton U
whose content was largely 
that of this extract from 
Nature (2007).

Aspect feels that his experiments (and others) show that quantum 
theory cannot be both “realistic” and “local”.  He does not say whether 
the theory can be even one of these two.

My view is that quantum theory is neither, if I understand what is 
meant by the terms “realistic” and “local/nonlocal”.

Quantum (and classical!) theory is not “realistic” in that it does not 
give a description that is independent of the (location of the) observer.  
[Observers at a and b in the above box give different descriptions of 
the experiment – until they learn of the possible changes in the other’s 
subsystem.  If they never learn of this, they never agree.]

Quantum theory is not “local” in that quantum effects like 
entanglement exist for a system whose parts are at different points.

However, “nonlocal” does NOT mean “faster than light signaling.” 
[Observer a’s measurement of subsystem a instantaneously affects his 
opinion of the situation at b, but this has no effect on the situation at b 
or on observer b – prior to lightspeed (or slower) signals from a to b.]

Debate about “local realism” is irrelevant to quantum theory.
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