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1 Problem

Show that positive entropy is generated when two volumes of ideal gases with different initial
temperatures are merged in two different ways:

1. The volumes are placed in thermal contact, but the gases remain in their original
volumes.

2. The partition between the two volumes is removed and the gases mix.

This problem was suggested by Julien Scordia, and is based on prob. I.4 of [1].

2 Solution

The two initial volumes Vi each contain ni molecules of ideal gases of heat capacities Cik
per molecule at initial temperatures Ti, where k is Boltzmann’s constants, and say, T1 > T2.
The total energy in the system is,

U = n1C1kT1 + n2C2kT2. (1)

Assuming that the system under consideration is thermally isolated from the rest of the
Universe, this energy is conserved in both processes, and in both cases the final temperature
T is related by,

n1C1T1 + n2C2T2 = (n1C1 + n2C2)T, (2)

T =
n1C1

n1C1 + n2C2

T1 +
n2C2

n1C1 + n2C2

T2. (3)

Both processes are irreversible, but since entropy is a state function, we can compute the
change in entropy of each gas by imagining reversible processes that lead to the same final
state (of that gas). The total entropy change is, of course, the sum of the entropy changes
of the two gases.

2.1 Equilibration without Change in the Volumes

In this case we imagine that each gas changes its temperature at constant volume as the
result of reversible heat flow to a sequence of external reservoirs with all intermediate tem-
peratures.1 The reversible entropy change of gas i can now be written as,

ΔSi =

∫
dQi

T
= niCik

∫
dT

T
= niCik ln

T

Ti
, (4)

1A complicated set of thermal switches is required to carry out this sequence of heat transfers. That is
while the irreversible equilibration of the temperature occurs “naturally”, an extremely intricate scenario is
required for the temperature changes to be a reversible.
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and the total entropy change is,

ΔS = n1C1k ln
T

T1
+ n2C2k ln

T

T2
. (5)

We expect that the total entropy change in the system of volumes 1 and 2 is positive (except
for the trivial case that T1 = T2 = T ), as the equilibration of the temperatures is irreversible
when these volumes are in isolation.2 However, lnT/T1 is negative, so it is not immediately
obvious that ΔS of eq. (5) is positive.

We define ai = niCi/(n1C1 + n2C2), such that a1 + a2 = 1 and eq. (5) can be rewritten
as,

ΔS

n1C1k + n2C2k
= a1 ln

T

T1
+ a2 ln

T

T2
= lnT − a1 lnT1 − a2 lnT2. (6)

Hence, ΔS is positive if,

T = a1T1 + a2T2 > T a1
1 T a2

2 (a1 + a2 = 1). (7)

For the special case that a1 = a2 = 1/2 this follows from the fact that unless T1 = T2,(
T1 + T2

2

)2

−
√

T1T2

2
=

(
T1 − T2

2

)2

> 0. (8)

The general case (which for m volumes of m gases at initial temperatures Ti leads to ΔS > 0
if a1T1 + a2T2 + · · ·+ amTm > T a1

1 T a2
2 · · · T am

m when a1 + a2 + · · ·+ am = 1) is an example of
an inequality attributed to MacLaurin (≈ 1740).3

2.2 Equilibration by Mixing

In case the two gases, initially in separate volumes, mix together into a single final volume
V, the entropy change is the sum of that associated with each gas expanding freely from its
initial volume Vi to V while its temperature changes from Ti to T .

We compute these entropy changes by imagining the evolution occurs reversibly in two
steps, first arriving reversibly at the final temperature T with no change in volume, and then
the volumes expanding reversibly at constant temperature T . The entropy change of the
first step is given in eq. (5). In the second step (where the energies of the gases again remain
constant),

dU = 0 = dQ − dW, dQ = dW = PdV =
nkTdV

V
, (9)

for an ideal gas, where k is Boltzmann’s constant. Hence, the entropy changes ΔS ′
i in the

second step are given by,

ΔS ′
i =

∫
dQi

T
= nik

∫
dV

V
= nik ln

V1 + V2

Vi
> 0. (10)

2The total entropy change is zero for these systems plus the sequence of auxiliary systems that would
permit a reversible transformation.

3See, for example, secs. 2.5-6 of [2]. If one accepts the second law of thermodynamics, it can be regarded
as “proof” of MacLaurin’s inequality.
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Since the sum of the entropy changes of the two volumes is positive in the second step, the
total entropy change is positive (even if T1 = T2),

4

ΔS = n1C1k ln
T

T1
+ n2C2k ln

T

T2
+ n1k ln

V1 + V2

V1
+ n2k ln

V1 + V2

V2
> 0. (11)

2.3 Mixing at Constant Pressure

A variant on the case of mixing of the two gases is to suppose that their initial pressures are
the same.5 If the two gases are isolated from the rest of the Universe, the result (11) holds
with the additional constraint that,

P =
n1kT1

V1
=

n2kT2

V2
, V2 =

n2T2

n1T1
V1, V = V1 + V2 = V1

n1T1 + n2T2

n1T1
. (12)

The final pressure is, recalling eq. (3),

Pfinal =
(n1 + n2)kT

V
=

n1 + n2

n1T1 + n2T2

(n1C1T1 + n2C2T2)

(n1C1 + n2C2)

n1kT1

V1

, (13)

which equals the initial pressure P if C1 = C2 (identical gases) but not in general.
The variant as posed in [4] adds the assumption of identical gases, in which case Pfinal = P ,

and the following analysis holds.
We can compute the entropy change by considering a single step in which each gas changes

its temperature (and its volume) reversibly at constant pressure P (by interaction with a
sequence of auxiliary systems of fixed pressure and intermediate temperatures). During these
reversible transformations,

dUi = niCk dTi = dQi − PdVi = dQi − nik dTi, dSi =
dQi

Ti
=

ni(1 + C)k dTi

Ti
, (14)

ΔS = n1(1 + C)k ln
T

T1
+ n2(1 + C)k ln

T

T2
. (15)

We define bi = ni/(n1 + n2), such that b1 + b2 = 1, T = b1T1 + b2T2 and eq. (15) can be
rewritten as,

ΔS

(n1 + n2)(1 + C)k
= b1 ln

T

T1
+ b2 ln

T

T2
= lnT − b1 lnT1 − b2 lnT2. (16)

Hence, ΔS is positive when T1 �= T2 according to the version of MacLaurin’s inequality,

T = b1T1 + b2T2 > T b1
1 T b2

2 (b1 + b2 = 1). (17)

4The case with T1 = T2 is posed as prob. 4-54 in [3].
5This version is posed as prob. 7.7 in [4].
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