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1 Problem

A nonconducting cylinder of length d is immersed in a uniform, static, external magnetic
field H0 parallel to its axis, as shown below. A linearly polarized electromagnetic wave
(typically a beam of light) with electric field E = Ei e

i(kz−ωt) x̂ is incident on one end of the
cylinder, where ω = 2πν is the angular frequency of the wave, and k = ω/c = 2π/λ is the
wave number in vacuum, and c is the speed of light. Deduce the small angle Δφ by which the
plane of polarization of the transmitted wave is rotated with respect to that of the incident
wave.

Give separate (classical) discussions for polarizable media and for magnetic media.
This effect was discovered by Faraday in 1845 [1] and was the first clear evidence for

electromagnetic effects on the propagation of light. For an extensive bibliography through
1967, see [2].

2 Solution

2.1 Microscopic Analysis for a Polarizable Gaseous Medium

We first give an analysis for a gaseous medium in which the index of refraction is near unity.1

Here, we ignore any magnetization of the medium.
The sense of the analysis is that there is a different index of refraction for left- and

right-handed circularly polarized waves that propagate parallel to the external magnetic
field. Then, the left- and right-handed components of a linearly polarized wave accumulate
a phase difference as they traverse the medium, such that the direction of linear polarization
changes with time/distance.

1This section follows sec. 20 of [3]. See also [4]. Compare the case of propagation of waves along magnetic
field lines in the Earth’s ionosphere [5].
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We follow the usual microscopic analysis of the index of refraction of a polarizable medium
by deducing the electric dipole moment p = −ex on an electron of charge −e and mass m
that is bound to the origin by a spring of constant K = mω2

0 under the influence of the
external magnetic field B0 = μrelH0 = μrelH0 ẑ and a weak electromagnetic wave with
(transverse) electric field Ew ei(kz−ωt) and Bw = Ew � B0.

2 We suppose that the velocity of
the electron in this field is small compared to the speed of light, so that the magnetic field
of the wave does not influence the motion of the electron. Then, the equation of motion of
the electron is,

mẍ = −mω2
0 x− e

(
Ew ei(kz−ωt) +

v

c
× B0 ẑ

)
. (1)

We henceforth assume that the electron remains close to its rest position, such that z in
eq. (1) can be regarded as a constant. Using the trial solution x = x0 ei(kz−ωt), we find,

(ω2
0 − ω2)x0 − iωeB0

mc
x0 × ẑ = − e

m
Ew, (2)

which implies that the displacement x0 is in the x-y plane.
For any vector A that is transverse to the z-axis we can write,

A = Ax x̂ + Ay ŷ = Ax

(
x̂ + i ŷ

2
+

x̂ − i ŷ

2

)
− iAy

(
x̂ + i ŷ

2
− x̂− i ŷ

2

)

=
Ax − iAy√

2

x̂ + i ŷ√
2

+
Ax + iAy√

2

x̂ − i ŷ√
2

≡ A− ê+ + A+ ê−, (3)

where,

A± =
Ax ± iAy√

2
and ê± =

x̂ ± i ŷ√
2

. (4)

Then,

ê± × ẑ =
x̂ ± i ŷ√

2
× ẑ =

−ŷ ± i x̂√
2

= ±i
x̂± i ŷ√

2
= ±i ê±. (5)

The equation of motion (2) can now be written as,

(ω2
0 − ω2) (x0− ê+ + x0+ ê−) + ωωB(x0− ê+ − x0+ ê−) = − e

m
(Ew− ê+ + Ew+ ê−), (6)

where,

ωB =
eB0

mc
(7)

is the Larmor (cyclotron) frequency of an electron in the static magnetic field H0.
The equation of motion (6) in the ê± basis does not mix the components x0± (which is

why we chose to use that basis), so we immediately find that,

x0± = − e

m

Ew±
ω2

0 − ω2 ∓ ωωB
. (8)

2We use Gaussian units in this note.
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The resulting electric polarization Pw of the medium, with number density N of electrons,
is,

Pw = −Nex = −Ne(x− ê+ + x+ ê−) ≡ Pw− ê+ + Pw+ ê−, (9)

where,

Pw± =
Ne2

m

Ew± ei(kz−ωt)

ω2
0 − ω2 ∓ ωωB

. (10)

The electric displacement Dw of the wave is,

Dw = Ew + 4πPw = [(Ew− + 4πP−) ê+ + (Ew+ + 4πP+) ê−] ei(kz−ωt)

≡ (ε−Ew− ê+ + ε+Ew+ ê−) ei(kz−ωt), (11)

where we introduce two dielectric constants ε± according to,

ε± = 1 +
4πNe2/m

ω2
0 − ω2 ∓ ωωB

= 1 +
ω2

p

ω2
0 − ω2 ∓ ωωB

, (12)

and we recall that,

ωp =

√
4πNe2

m
, (13)

is the plasma frequency of the medium. Corresponding to the dielectric constants (12) are
two indices of refraction,3

n± =
√

ε± ≈ 1 +
ω2

p

2(ω2
0 − ω2 ∓ ωωB)

, (14)

where the approximations hold for gaseous media where n± ≈ 1, and two wave numbers,

k± =
ωn±

c
. (15)

Hence, we learn that the two wave components Ew− ê+ and Ew− ê+ propagate along the
z-direction with different velocities, and the wave function Ew should actually be written as,

Ew = Ew− ei(k−z−ωt) ê+ + Ew+ ei(k+z−ωt) ê− , (16)

and similarly for the fields Dw and Pw. The wave Ew− ei(k−z−ωt) ê+ is designated as left-
handed circularly polarized, and from eqs.(12) and (15) we see that for frequencies ω < ω0 (as
holds at optical frequencies in typical media) the velocity of this wave is smaller than that
of the right-handed circularly polarized wave Ew+ ei(k+z−ωt) ê−.

Turning at last to the particular context of this problem, we suppose that the medium
extends from z = 0 to L, and that the wave enters the medium with linear polarization in
the x-direction. That is, at z = 0 the electric field is Ew(z = 0) = Ew e−iωt x̂. In this case

3In principle, there is a contribution to the index of refraction n =
√

εμ due to the diamagnetic perme-
ability μ of the medium. In the present model, the driven atomic electrons are associated with magnetic
moments −(e/2c)(x0+v+ − x0−v−) = −(eω/2c)(x2

0+ − x2
0−) ∝ B2

ω , so the diamagnetic permeability differs
from unity by a small, nonlinear correction that we ignore.
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we see from eq. (4) that Ew+(z = 0) = Ew−(z = 0) = Ew/
√

2. Then, according to eq. (16)
the waveform at the exit of the medium is,

Ew(z = L) =
Ew√

2

(
eik−L ê+ + eik+L ê−

)
e−iωt

=
Ew

2

[(
eik−L + eik+L

)
x̂ + i

(
eik−L − eik+L

)
ŷ
]

e−iωt

=
Ew

2

[(
ei(k−−k+)L/2 + e−i(k−−k+)L/2

)
x̂ + i

(
ei(k−−k+)L/2 − e−i(k−−k+)L/2

)
ŷ
]

ei(k−+k+)L/2 e−iωt

= Ew

(
cos

(k− − k+)L

2
x̂− sin

(k− − k+)L

2
ŷ

)
ei[(k−+k+)/2−k]L ei(kL−ωt)

= Ew

(
cos

ΔnωL

2c
x̂ + sin

ΔnωL

2c
ŷ

)
ei[kL−ωt+(nave−1)ωL/c], (17)

where,

Δn = n+−n− ≈ ωωBω2
p

(ω2
0 − ω2)2 − ω2ω2

B

, nave =
n+ + n−

2
≈ 1+

(ω2
0 − ω2)ω2

p

2[(ω2
0 − ω2)2 − ω2ω2

B]
, (18)

and the approximations hold for gaseous media where n± ≈ 1.
The wave in vacuum for z > L has a phase retardation δ = (nave − 1)ωL/c as is typical

for wave propagation through a dielectric medium of length L at velocity c/nave; and the
wave is linearly polarized at angle,

Δφ =
ΔnωL

2c
≈ e

2mc2

ω2ω2
p

(ω2
0 − ω2)2 − ω2ω2

B

B0L ≡ VBB0L, (19)

with respect to the x-axis, where,

VB ≈ e

2mc2

ω2ω2
p

(ω2
0 − ω2)2 − ω2ω2

B

=
2πNe3

m2c2

ω2

(ω2
0 − ω2)2 − ω2ω2

B

=
2πNer0

m

ω2

(ω2
0 − ω2)2 − ω2ω2

B

(20)
is called the Verdet constant,4,5 and r0 = e2/mc2 is the classical electron radius. This change
in angle of the polarization of the wave is the Faraday rotation.

4Historically, the Verdet constant was related to H rather than B (following Lorentz’ preference), with
Δφ = VHH0L and VH = μrelVB , where μrel is the relative permeability for linear magnetic media.

5(Nov. 14, 2021) Expressing the Verdet constant in terms of wavelength rather than angular frequency,
we have, approximating λ + λ0 by 2λ0,

VB ≈ 2πNer0

(2πc)2m
λ4

0λ
2

(λ2 − λ2
0)2 − λ4

0λ
2ω2

B/(2πc)2
≈ Ner0

8πmc2

λ2
0λ

2

(λ − λ0)2 − λ2
0λ

2ω2
B/4(2πc)2

=
Nr0μB

2hc

λ2
0λ

2

(λ − λ0)2 − λ2
0λ

2ω2
B/4(2πc)2

, (21)

where μB = e�/2mc = eh/4πmc is the Bohr magneton and h is Planck’s constant. Compare eq. (4) of [7],
which includes quantum factors f for the oscillator strength and and κ for the angular momentum.
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The wave takes time Δt = Lnave/c to traverse the medium of length L, so the direction
of polarization of the wave inside the medium precesses at rate,6

Ω =
Δφ

Δt
=

Δn

2nave

ω =
n+ − n−
n+ + n−

ω ≈ ω2ω2
p

2[(ω2
0 − ω2)2 − ω2ω2

B] + ω2
p(ω

2
0 − ω2)

ωB. (22)

In general, the Faraday rotation is very small, except when the wave frequency ω is close
to a natural frequency ω0 of the polarizable medium.

2.2 Microscopic Analysis for a Magnetic Medium

Many important examples of Faraday rotation occur in magnetic rather than dielectric media.
Classical models of magnetic media are less satisfactory than those for dielectric media. Here
we give a model for the Faraday effect in magnetic media which is fairly plausible, following
Becquerel [8]. See also [9].

We suppose that the bulk magnetization density M = Nμ of the (nonconducting)
medium is due to a distribution of individual magnetic moments μ at N sites per unit
volume. These magnetic moments have fixed locations inside the medium, but the direc-
tion of the moment is affected by a magnetic field B = H + 4πM according to the torque
equation,

dL

dt
= τ = μ × B = μ × H, (23)

where L = −μ/Γ is the angular momentum associated with a magnetic moment μ. We recall
that Γ = e/2mc in case the magnetic moment is due to orbital motion of an electron, while
Γ = e/mc for the intrinsic (spin) magnetic moment of an electron. The torque equation (23)
can be rewritten as,

dμ

dt
= ΓB ×μ = ωB × μ, (24)

which implies that the magnetic moment μ precesses about the direction of H with angular
velocity,

ωH = ΓH =

⎧⎨
⎩

eH
2mc

Ĥ (orbital),

eH
mc

Ĥ (spin).
(25)

The sense of precession is the same for any direction of the moment μ. A small leap in the
classical argument is that the precession occurs even when the moment is exactly parallel or
antiparallel to the external field H.

Numerically, ωH = eH/mc = 1.8×1011 for H = 10, 000 gauss, so the precession frequency
in laboratory experiments is typically small compared to optical frequencies. Hence, we
ignore the effect of the magnetic field Hw of the incident wave on the magnetic moments,
and take H in eq. (25) to be only the external static field H0 ẑ.

6If the external magnetic field B0 is in the −z-direction, then B0 , ωB and Ω are negative. This implies
that vectors B0 and Ω are in the same direction in all cases. An elaborate discussion of this factoid is given
in [6].
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We now consider the interaction of the magnetic medium with an optical wave that
propagates along the z-axis. As in eq. (16), we can decompose this wave into left- and
right-handed circularly polarized components,

Ew = Ew− ei(k−z−ωt) ê+ + Ew+ ei(k+z−ωt) ê− , (16)

The electric field vector of the left-handed component, Ew− ei(k−z−ωt) ê+, rotates with angular
velocity ω ẑ at a fixed value of z, while that of the right-handed component rotates with
angular velocity −ω ẑ. We argue that because of the precession (25), the component fields
rotate at angular velocities,

ω± = ω ± ωH (26)

relative to the electronic structure of the medium, so that the index of refraction for this
component is,

n± = n(ω±) = n(ω) ± ωH
dn(ω)

dω
. (27)

As before, we consider the sum and difference of the indices of refraction,

Δn = n+ − n− = 2ωH
dn(ω)

dω
, nave =

n+ + n−
2

= n(ω), (28)

such that the electric field at distance z = L within the magnetic medium is,

Ew(z = L) = Ew

(
cos

ΔnωL

2c
x̂ + sin

ΔnωL

2c
ŷ

)
ei[kL−ωt+(nave−1)ωL/c], (29)

when the wave entered the medium at z = 0 with linear polarization in the x-direction. The
wave at z = L is linearly polarized at angle,

Δφ =
ΔnωL

2c
=

ωωH

c

dn

dω
L = Γ

ω

c

dn

dω
H0L = −Γ

λ

c

dn

dλ
H0L ≡ V H0L (30)

with respect to the x-axis, where,

V = −Γ
λ

c

dn

dλ
=

⎧⎨
⎩

− e
2mc2

λdn
dλ

(orbital),

− e
mc2

λ dn
dλ

(spin).
(31)

is the Verdet constant of the medium. Note that dn/dλ is negative for typical optical
materials.

The Verdet constant for some diamagnetic materials is reasonably close to the form of
eq. (31) for orbital magnetization. See, for example, [9]. However, the Verdet constant for
many diamagnetic materials is closer to 1/2 of the orbital prediction [10]. The largest Verdet
constants are obtained with glassy materials doped with paramagnetic ions [11], for which,
however, eq. (31) is not a particularly good description.

The wave takes time Δt = Lnave/c to traverse the medium of length L, so the direction
of polarization of the wave inside the medium precesses at rate,

Ω =
Δφ

Δt
=

Δnω

2nave
= −λ

n

dn

dλ
ωH . (32)
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Although our discussion of the Faraday rotation in a magnetic medium appeared to
emphasize the magnetic properties of that medium, the presence of the index of refraction
n =

√
εμ in eq. (30) implies that the dielectric properties of the medium are relevant also.

Indeed, if ε−1 � μ−1 we reconsider the microscopic model of the index from sec. 2.1, then
taking n = nave according to eq. (18) leads to,

dn

dω
≈ wω2

p[(ω
2
0 − ω2)2 + ω2

0ω
2
H]

[(ω2
0 − ω2)2 − ω2ω2

H ]2
≈ ωω2

p

(ω2
0 − ω2)2 − ω2ω2

H

, (33)

and the Faraday rotation associated with orbital magnetization is,

Δφ =
e

2mc2
ω

dn

dω
H0L ≈ e

2mc2

ω2ω2
p

(ω2
0 − ω2)2 − ω2ω2

H

H0L, (34)

which is the same as that found in eq. (19).
Thus our two derivations of the Faraday rotation are essentially equivalent if the index

of refraction is largely due to the dielectric properties of the medium, as is the case in
most magneto-optic materials. It is perhaps counterintuitive that a derivation that begins
with consideration of magnetic moments ends up with a form in which aspects of electric
dipole moments are prominent. The latter form is, however, more similar to that found in
derivations based on quantum theory. See, for example, [12].

2.3 Historical Theories of Faraday Rotation (July 21, 2020)

The preceding analysis combined a model of electrons in matter with Maxwell’s equations.
This type of analysis could only be made after the advent of so-called electron theory in the
1890’s.7 Analyses of Faraday rotation by Maxwell, and by C. Neumann [15] using Weber’s
electrodynamics, are reviewed in [16]. Maxwell did not associate electric charge with particles
in the present sense, and argued in Arts. 822-830 of his Treatise [17] that the phenomenon
of Faraday rotation supported his notion of molecular vortices. The awkward aspects of this
argument may well have slowed the acceptance of Maxwellian electrodynamics.
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