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1 Problem

What is the electromagnetic-field angular momentum of a charged particle in a circular
orbit in a uniform magnetic field B0 = B0 ẑ, supposing the velocity of the particle is small
compared to the speed c of light?

This problem was inspired by [1], where it was claimed (after eq. (19)) that the electric
field of the circling charge q obeys ∇×Eq = 0, which implies that the magnetic field of the
charge is constant in time. This is not so,1 and hence a better solution for the field angular
momentum is required.2

2 Solution

This problem is somewhat ill posed, as a charged particle in a circular orbit radiates angular
momentum, such that the angular momentum stored in the electromagnetic field depends
on the past history of the particle.

To give the discussion a crisper basis, we suppose an electric charge q of rest mass
m is initially at rest in the magnetic field, and is slowly accelerated to velocity v0 (with
v0 � c) along a straight line perpendicular to B0, and released at time t = 0. We ignore
the tiny amount of radiation emitted during the initial acceleration,3 such that lines of the
magnetic field Bq(t = 0) of the charged particle are circles (rather than a vortex) in planes
perpendicular to v0. Then, at time t = 0 the interaction field energy,
UEM,0 =

∫
Bq(t = 0) · B0 dVol/4π (in Gaussian units) is zero, and the total energy of the

charged particle is just its kinetic energy U0 = mv2
0/2.

1In [1], “quantum” particles are considered, whose stationary states in a uniform magnetic field can be a
recently discovered [2, 3] variant of Landau levels (for the latter, see, for example, §111, p. 424 of [4]) called
electron-vortex states. The charge density ρ and current density J associated with these electron-vortex
states are time independent, such that one can say that the electric and magnetic fields of the charged
particle are time independent, and hence ∇ × Eq = 0 while these states last. However, the vortex states
(except the lowest-energy level) decay via photon emission, so that these states do have an association with
time-dependent electric fields.

Here, we consider this association in a “classical” context, where circling charged particles emit radiation
at all times (in contrast to the “quantum” case where radiation is emitted only during “quantum jumps”).

2A famous example of (classical) electromagnetic-field angular momentum was given by Feynman [5].
See also [6, 7, 8] and references therein.

3The rate of radiation of energy (and angular momentum) varies as a2 according to the Larmor formula
(3), where the initial acceleration is a = v0/T for constant acceleration during time interval T . The total
angular momentum radiated at t < 0 varies as a2T ∝ 1/T , which is negligible for large T .
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At time t = 0 the charged particle is set free, and enters a circular orbit of radius
r(t = 0) ≡ r0, losing energy slowly due to electromagnetic radiation, such that r(t) drops to
zero. The charge eventually comes to rest at the center of its circular orbit at time t = 0.

The angular momentum about the center of the circular orbit of radius r0 (at time t = 0)
is simply the mechanical angular momentum, L(t = 0) = mv0r0, of the charge. That is, the
field angular momentum, LEM(t = 0) =

∫
r′× (Eq(t = 0)×B0) dVol′/4πc, is zero, taking the

self-field angular momentum of the charge to be part of its mechanical angular momentum,
and noting that the electric field Eq(t = 0) is essentially the (spherically symmetric) static
electric field of the charge at that time.

For v0 � c, trajectory of the particle is always approximately circular, so the speed v(t)
is related to the radius r(t) of the circular orbit in, say, the x-y plane by,

F = m
v2

r
=

qvB0

c
v =

qB0r

mc
, r0 =

mcv0

qB0

, ω =
v

r
=

qB0

mc
, (1)

where we take B0 = B0 ẑ, r0 = r0 x̂ and v0 = −v0 x̂, such the the motion in the x-y plane is
clockwise from “above” with uniform angular velocity ω (the “cyclotron” frequency). The
total acceleration a is approximately the radial acceleration,

a ≈ v2

r
= ω2r. (2)

The power radiated as the charge spirals inward to the center of the circular orbit follows
from the Larmor formula,

dUrad

dt
=

2q2a2

3c3
. (3)

Oct. 2, 2024. Thanks to Paul Berman (private communication and [9]) for noting that
the subsequent analysis was somewhat incomplete in an earlier version of this note.

The emission of radiation is associated with a radiation-reaction/damping force, given
for v � c by4

Fdamping =
2q2

3c3
v̈. (5)

For the present case of approximately uniform circular motion with angular velocity ω,
v̈ ≈ −ω2v, and so

Fdamping ≈ −2q2ω2

3c3
v. (6)

4The radiation-damping force (5) was first identified by Planck [10] in 1896 by supposing that the rate
of work done by the damping force equals (the negative of) the rate of radiated electromagnetic energy,

dWdamping/dt = Fdamping · v = −dUrad/dt. (4)

The expression (5) had previously been identified by Lorentz as the self force of an accelerated charge of
finite extent, without relating the self force to radiation. For a review, see [12].
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Then, the total force on the charge q is the sum of the Lorentz force qv/c × B0 due to the
uniform magnetic field B0 and the radiation-damping force, eq. (6). The equation of motion
of the charge is then,

F = mv̇ ≈ q
v

c
× B0 − 2q2ω2

3c3
v, v̇x = ωvy − γvx, v̇y = −ωvx − γvy, (7)

where the damping constant is

γ =
2q2ω2

3mc3
� ω. (8)

The solution to eq. (7) is, for v0 = −v0 ŷ,

v = −v0 e−γt[sin(ωt) x̂ + cos(ωt) ŷ], (9)

whose time integral is, recalling that r0 = r0 x̂,

r(t) = r0 +

∫ t

0

v(t′) dt′ = r0 − v0

ω2 + γ2
(ω x̂ + γ ŷ)

− v0 e−γt

ω2 + γ2
{[−γ sin(ωt) − ω cos(ωt)] x̂ + [−γ cos(ωt) + ω sin(ωt)] ŷ}

≈ r0 − r0 x̂ − r0γ

ω
ŷ + r0 e−γt[cos(ωt) x̂ − sin(ωt) ŷ] +

r0γ e−γt

ω
[sin(ωt) x̂ + cos(ωt) ŷ]

≈ r0 e−γt[cos(ωt) x̂− sin(ωt) ŷ] +
r0γ

ω

[
e−γt sin(ωt) x̂ − (

1 − e−γt cos(ωt)
)

ŷ
]

≈ r0 e−γt[cos(ωt) x̂− sin(ωt) ŷ], (10)

using Dwight 577.1 and 577.2 [13]. The magnitudes of r(t) and v(t) obey r ≈ r0 e−γt and
v = v0 e−γt. In the approximation of the next to last line of eq. (10), the instantaneous center
of the spiral motion is at (r0γ/ω) [e−γt sin(ωt) x̂ − (1 − e−γt cos(ωt)) ŷ], which converges on
r(t → ∞) ≈ −(r0γ/ω) ŷ.

The rate of change of mechanical (kinetic) energy Umech of the charge is, noting that the
Lorentz force does no work on charge q, and recalling (6),

dUmech

dt
= Ftotal · v = Fdamping · v = −2q2ω2v2

3c3
= −2q2v4

3c3r2
= −2q2a2

3c3
= −dUrad

dt
, (11)

as expected from Planck’s derivation (4) of the radiation-damping force.5

5The behavior of r(t) can be deduced from eq. (11),

Umech =
mv2

2
≈ mω2r2

2
,

dUmech

dt
≈ mω2r

dr

dt
= −dUrad

dt
= −2q2ω4r2

3c3
. (12)

Then, the equation of motion of the spiral is,

dr

dt
≈ −2q2ω2r

3mc3
= −γr (� v), r ≈ r0 e−γt. (13)
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It is instructive to consider the mechanical (and electromagnetic) angular momentum of
the system,

Lmech = r × mv ≈ −mωr2 ẑ = −mωr2
0 e−2γt ẑ, (14)

which decays to zero at rate6

dLmech

dt
≈ 2mγωr2

0 e−2γt ẑ =
2

ω

dUrad

dt
ẑ, (15)

noting that

dUrad

dt
=

2q2a2

3c3
=

2q2(ω2r)2

3c3
=

2q2ω4r2
0 e−2γt

3c3
= mγω2r2

0 e−2γt. (16)

It is appealing to suppose that the loss of mechanical angular momentum of the system
is entirely due to the radiation of angular momentum, in analogy to the fact that the loss of
mechanical kinetic energy is entirely due to radiated electromagnetic energy, as noted above.
However, as shown in Prob. 5 of [14], the rate of radiation of angular momentum by a charge
in uniform circular motion about the z-axis is related by7

dLrad

dt
=

1

ω

dUrad

dt
ẑ = mγωr2

0 e−2γt. (17)

Thus, the radiation of angular momentum accounts for only half of the loss of mechanical
angular momentum as the system decays.

The mechanical angular momentum can be changed by a torque on the system as well as
by radiation of electromagnetic angular momentum. The Lorentz force, qv/c×B0 on charge
q is not entirely in the azimuthal direction as the charge slowly spirals in to the origin, such
that the associated torque about the origin is nonzero,

τLorentz = r ×
(
q
v

c
× B0

)
= −q

c
(r · v)B0 (18)

Using the exact form of r(t) from eq. (10), the time average of r · v is

〈r · v〉 = −v2
0γ e−2γt

ω2 + γ2
≈ −v2

0γ e−2γt

ω2
= −r2

0γ e−2γt, (19)

so the time-average torque due to the Lorentz force is

〈τLorentz〉 ≈ qB0

c
r2
0γ e−2γt ẑ = mγωr2

0 e−2γt ẑ =
1

2

dLmech

dt
, (20)

recalling eq. (15). In addition, the torque due to the radiation-damping force is

〈τ damping〉 = 〈r × Fdamping〉 =

〈
r ×−2q2ω2

3c3
v

〉
≈ 2q2ω2

3c3
r0v0 e−2γt ẑ = mγωr2

0 e−2γt ẑ

=
dLrad

dt
=

1

2

dLmech

dt
, (21)

6Lmech is initially in the negative z direction, and rises to zero with time, so that dLmech/dt is in the
positive z direction.

7In §75, p. 204 of [15] it was argued that dLrad/dt = τdamping = the torque due to radiation damping.
This is confirmed to be consistent with our eq. (17) in eq. (21) below.
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recalling (17). Thus, the total torque “causes” the change in the mechanical angular mo-
mentum,8

〈τ total〉 = 〈τLorentz〉 + 〈τ damping〉 =
dLmech

dt
. (23)
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