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1 Problem

Maxwell’s first equation, ∇ · E = 4πρ (in Gaussian units), implies that the flux of electric
field E across any surface enclosing electric charge q at some time t is 4πq, independent
of the motion of the charge. Show that in case of an accelerated point charge this relation
holds for the flux across the spherical shell whose center is the retarded position of the charge
defined by an arbitrary observation point (at time t) and whose radius is the distance from
the retarded position to the observation point.

This problem was suggested by Javier Castro Paredes, and the solution follows Alfonso
Fondado.

2 Solution

Since the velocity of the accelerated charge is less than the speed of light c in vacuum, the
charge is inside the sphere under consideration, and hence the electric flux across the sphere
must be 4πq (assuming there is no other charge inside the sphere).

We can verify this in more detail using the fields of an accelerated charge q with position
xq(t) as deduced by Liénard (1898) [1] and by Wiechert (1900) [2] (in Gaussian units),

E(x, t) = q

[
r̂ − β

γ2r2(1 − β · r̂)3

]
+

q

c

[
r̂ × ((r̂− β) × β̇)

r(1 − β · r̂)2

]
, B = [r̂] × E, (1)

where β = v/c = dxq/d ct = ẋq/c, γ = 1/
√

1 − β2, quantities inside brackets [ ] are
evaluated at the retarded time, tret = t − [r]/c, [r] = xq(t) − xq(tret), and [r̂] = [r]/[r].

We consider some observation point x at time t, for which the distance to the retarded
position of the charge is [r], as shown in the figure below.
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Next, we consider the spherical shell of radius [r] centered on the retarded position of the
charge, and evaluate the flux of the electric field across this shell at time t. Only the first
term of E in eq. (1) contributes to this flux,

Φ = 2π[r]2
∫ 1

−1

d cos θ E · [r̂] = 2π[r]2
∫ 1

−1

d cos θ

[
q

γ2r2(1 − β · r̂)2

]

=
2πq

γ2

∫ 1

−1

d cos θ
1

(1 − β cos θ)2
=

2πq

γ2

1

β

(
1

1 − β
− 1

1 + β

)
= 4πq, (2)

taking θ to be the angle between the retarded distance [r] and the retarded velocity [v], and
noting that the first term of E is independent of the azimuth around the direction of [v].

This result is a partial check that the Liénard-Wiechert fields (1) satisfy Maxwell’s equa-
tions.

A Appendix: Uniformly Moving Charge

We can also confirm (somewhat laboriously) that the flux is 4πq for the case of a charge
with uniform velocity v, using its electromagnetic fields as deduced in 1888 by Heaviside [3]
and by Thomson (1889) [4],1 prior the results of Liénard and Wiechert,

E =
q

γ2r2(1 − β2 sin2 φ)3/2
r̂, B = β × E, β =

v

c
, γ =

1√
1 − β2

, (3)

where r is the distance from the present position of the charge to the observer, φ is the angle
between r and v, and c is the speed of light in vacuum.

We consider an observation point with coordinates (r0, φ0) with respect to the present
position of charge q, as shown in the figure below.

We now adopt a spherical coordinate system with its origin at the retarded position of
the charge at the present time t, and the polar axis to lie along the line from the retarder
position to the present position. We also define the retarded time of this configuration to be
tret = 0.

The distance from the retarded position to the present position is vt, and the distance
from the retarded position to the present position is ct, where (although this is not needed

1For commentary on their deductions, see the end of [5].
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below) the latter is related by,

(ct)2 = r2
0 + (vt)2 + 2r0vt cosφ0, ct = γ2r0

(
β cos φ0 +

√
1 − β2 sin2 φ0

)
, (4)

such that if φ0 = 0 then ct = r0/(1 − β).
The present position of the charge is inside the spherical shell of radius [r] = ct, so the

flux Φ of electric field across this shell must be 4πq,

Φ = 2π(ct)2

∫ 1

−1

d cos θ E cos α = 2πq

∫ 1

−1

d cos θ
cos α

γ2(1 + β2 − 2β cos θ)(1 − β2 sin2 φ)3/2

=
2πq

γ2

∫ 1

−1

d cos θ
1 − β cos θ

(1 + β2 − 2β cos θ)3/2(1 − β2 + β2cos2φ)3/2

=
2πq

γ2

∫ 1

−1

d cos θ
1 − β cos θ

{(1 − β2)(1 + β2 − 2β cos θ) + β2(β − cos θ)2}3/2

=
2πq

γ2

∫ 1

−1

d cos θ
1 − β cos θ

{1 − β4 − 2(1 − β2)β cos θ + β4 − 2β3 cos θ + β2 cos2 θ}3/2

=
2πq

γ2

∫ 1

−1

d cos θ
1 − β cos θ

(1 − 2β cos θ + β2 cos2 θ)3/2
=

2πq

γ2

∫ 1

−1

d cos θ
1 − β cos θ

(1 − β cos θ)3

=
2πq

γ2

∫ 1

−1

d cos θ
1

(1 − β cos θ)2
=

2πq

γ2

1

β

(
1

1 − β
− 1

1 + β

)
= 4πq, (5)

noting that,

r2 = (ct)2 + (vt)2 − 2(ct)(vt) cos θ = (ct)2(1 + β2 − 2β cos θ), (6)

sinα

vt
=

sin φ

ct
=

sin θ

r
, (7)

cos α =

√
r2 − (vt)2 + (vt)2 cos2 θ

r
=

√
1 − 2β cos θ + β2 cos2 θ√

1 + β2 − 2β cos θ
=

1 − β cos θ√
1 + β2 − 2β cos θ

, (8)

cosφ =

√
r2 − (ct)2 + (ct)2 cos2 θ

r
=

√
β2 − 2β cos θ + cos2 θ√

1 + β2 − 2β cos θ
=

β − cos θ√
1 + β2 − 2β cos θ

. (9)

For another example of Gauss’ law in relation to a uniformly moving charge, see the
Appendix to [6].
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