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1 Problem

Deduce forms of a static magnetic field B(x) such that the Lorentz force density J × B on
the associated current density J is everywhere zero.1,2

Assuming that the medium has permeability μ0 (and that any electric field is also static),
the current density is proportional to ∇×B, so the Lorentz force vanishes if (∇×B)×B = 0,
which obtains when,

∇× B = f(x)B (1)

for any scalar function f(x), noting that ∇ · B = 0. In particular, the function f can be a
constant k, such that any (vector) eigenfunction of the curl operator is a possible force-free
magnetic field.3

2 Solution

2.1 Cowling’s Theorem

Force-free magnetic fields are a possible model of the magnetic fields of planets, stars and
other astrophysical regions, which fields are observed to be quasistatic. The question of
static, force-free magnetic fields seems to have been first considered by Cowling [5, 6], who
concluded that they cannot exist if they are to be axially symmetric. This result is sometimes
called Cowling’s Theorem. A corollary is that the Earth’s magnetic field is dynamic and/or
nonaxisymmetric.

However, it appears that this theorem holds only with the additional assumption that
the magnetic field has no azimuthal component Bφ [7], contrary to the claim of Cowling.

A static, force-free magnetic field has J ∝ ∇ × B ∝ B, so the magnetic field exists only
where the current density J is nonzero. Thus, there is no force-free magnetic field external
to the current distribution, and such a field cannot apply to astrophysical objects such as the

1There is no such thing as a force-free electric field, since force density �E on charge density � can be
zero only if E = 0 wherever � �= 0, but the first Maxwell equation ∇ · E = �/ε0 implies that E is nonzero
wherever the volume charge density � is nonzero.

2The conducting medium is subject to internal stresses described by the Maxwell stress tensor,
(1/μ0)(BiBj − δijB

2/2), which are always nonzero for nonzero B and can lead to deformations of the
medium even if the Lorentz force is small/zero [1].

3If the vector B represents the velocity v of an incompressible fluid, then condition (1) corresponds to
so-called Beltrami flow (1889). Vectors that obey eq. (1) are sometimes called Trkalian (1919). See, for
example, [2, 3, 4].
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Earth and Sun that have external magnetic fields. Thus, the corollary of Cowling’s theorem
that the Earth’s magnetic field is dynamic and/or nonaxisymmetric appears to be basically
correct.4 However, the concept of a static, force-free magnetic field remains interesting in
principle.

2.2 Lundquist’s Solution

The first demonstration of a static, force-free magnetic field is due to Lundquist [9, 10],5 who
considered eq. (1) with f = k in cylindrical coordinates (ρ, φ, z) for fields with dependence
only ρ,

∂Bz

∂ρ
= −kBφ,

1

ρ

∂(ρBφ)

∂ρ
= kBz. (2)

A particular solution to eq. (2) is,

Bρ = 0, Bφ = J1(kρ), Bz = J0(kρ), (3)

where J0 and J1 are Bessel functions. The field lines are helices [9], and since the Bessel
functions are oscillatory in ρ there are both left- and righthanded helices, and ones with both
positive and negative Bz. Such a complex field pattern seems somewhat unlikely to occur in
Nature, but it is suggestive that other force-free forms exist as well.

2.3 Other Simple Force-Free Magnetic Fields

In rectangular coordinates a force-free field that depends only on z obeys,

∂By

∂z
= −kBx,

∂Bx

∂z
= kBy. (4)

A particular solution to eq. (4) is,

Bx = cos kz, By = − sin kz, Bz = 0, (5)

for which ∇ · B = 0. The lines of B are straight in any plane of constant z, making angle
φ = kz to the x-axis. As with the example in sec. 2.2, this is not a physically plausible field
configuration.

A force-free field that depends only on z in cylindrical coordinates must obey,

∂Bφ

∂z
= −kBρ,

∂Bρ

∂z
= kBφ,

Bφ

ρ
= kBz. (6)

A particular solution to eq. (6) is,

Bρ = B0, Bφ = 0, Bz = 0. (7)

4For a simplified discussion, see pp. 6-7 of [8].
5Equation (3) with B interpreted as fluid velocity v dates back to [11].
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However, ∇ ·B = B− 0/ρ, so eq. (7) cannot represent a magnetic field (contrary to a claim
in sec. II(a) of [12]).

In spherical coordinates (r, θ, φ) a force free field that depends only on r obeys,

Bφ = kr tan θBr,
∂(rBφ)

∂r
= −krBθ,

∂(rBθ)

∂r
= krBφ, (8)

for which there is no nontrivial solution, contrary to a claim in sec. III(a) of [12].
It appears that a more general method is needed to deduce the forms of additional force-

free magnetic fields.

2.4 A General Solution

Considerations [13] subsequent to Lundquist’s [9, 10] soon led to a general solution for force-
free magnetic fields [14, 15, 16, 17].6 Taking the curl of eq. (1) with f = k, we have that,

∇ × (∇ ×B) = ∇(∇ · B) −∇2B = k2B, (9)

and hence, force-free magnetic fields are a subset of solutions to the vector Helmholtz equa-
tion,

(∇2 + k2)B = 0. (10)

A useful decomposition of solutions to the vector Helmholtz equation is due to Hansen
[18] (see also sec. 7.1 of [19]), in which we write the field B as a linear sum of three fields,

S = ∇ψ, T = ∇ × ψ a = ∇ψ × a, and P =
1

k
∇ ×T, (11)

for any function ψ that obeys the scalar Helmholtz equation,

(∇2 + k2)ψ = 0, (12)

where a is either a constant vector or the position vector x (= r r̂ in spherical coordinates
(r, θ, φ)). The three fields S, T and P have been named scaloidal, toroidal and poloidal,
respectively, by Elasser [20].7 The scaloidal/irrotational term S does not contribute to
magnetic fields, which obey ∇ · B = 0, and we have that,

B = P + T. (13)

Since T obeys eq. (10), and ∇ · T = 0, it follows from eq. (11) that,

∇× P =
1

k
∇ × (∇ ×T) = −1

k
∇2T = kT, and T =

1

k
∇× P, (14)

and hence,
∇ × B = ∇ × P + ∇ × T = kT + kP = kB. (15)

6Independently, general solutions to eq. (1) with B interpreted as fluid velocity v have been developed
by several authors, as summarized in [2, 3].

7Equation (11) is a variant on the Helmholtz decomposition of any vector field (see, for example, [21]),
in which S corresponds to the irrotational part, and P + T to the rotational part, of B.
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Thus, the form (13) is an eigenfunction of the curl operator, and is a force-free magnetic
field.8

It remains to consider a general set of solutions ψ to the scalar Helmholtz wave equation
(12), which has separable solutions in 11 coordinate systems [23]. Here, we consider the
basic three.9,10

2.4.1 Solution in Rectangular Coordinates

Solutions to the scalar Helmholtz wave equation (12) in rectangular coordinates have the
form of plane waves,

ψ = eik·x, (17)

where the wave vector k = (kx, ky, kz) can have complex components, so long as k2 =
k2

x + k2
y + k2

z . Then,

∇ψ = ik eik·x, (18)

and the toroidal component of the force-free magnetic field can be taken as,

T = ∇ψ × x = ik× x eik·x, (19)

from which we obtain the poloidal component as,

P =
1

k
∇× T = ∇ × (ik̂ × x eik·x) = ik̂∇ · (x eik·x) − i(k̂ · ∇)x eik·x

= 3ik̂ eik·x − k̂(k · x) eik·x − ik̂ eik·x + kx eik·x. (20)

Thus, a force-free magnetic field can be written as,

B = P + T = [2ik̂− (k · x)k̂ + kx + ik× x] eik·x. (21)

For example, if k = (0, 0, k), then,

B = [2iẑ − kz ẑ + kx − iky x̂ + ikx ŷ] eikz = [k(x− iy) x̂ + k(y + ix) ŷ + 2iẑ] eikz. (22)

Alternatively, the toroidal component of the force-free magnetic field can be taken as,

T = ∇ψ × a = ik× a eik·x, (23)

for any constant vector a. In this case the poloidal component is,

P =
1

k
∇ × T = ∇ × (ik̂× a eik·x) = −k × (k̂× a) eik·x = [k a − (k · a) k̂] eik·x. (24)

8A variant on the above is that for any magnetic field B′ that satisfies the vector Helmholtz equation
(10), the field,

B = B′ +
1
k

∇ × B′ (16)

is force free [22], which can be used to deduce time-dependent forms.
9For a solution in toroidal coordinates, see [24].

10For a different characterization of eigenfunctions of the curl operator, see [25].
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Thus, a force-free magnetic field can also be written as,

B = P + T = [k a− (k · a) k̂ + ik× a] eik·x. (25)

For example, if k = (0, 0, k), then,

B = [ka− kaz ẑ + ik ẑ × a] eikz. (26)

With a = x̂/k we obtain,

B = (x̂ + iŷ) eikz, (27)

whose real part is the form (5).

2.4.2 Solution in Cylindrical Coordinates

In cylindrical coordinates (ρ, φ, z), solutions to the Helmholtz equation (12) that are finite
on the z-axis can be written (see, for example, sec. 7.1 of [19]),

ψn = Jn(kρρ) e
i(kzz+nφ), (28)

where n is a non-negative integer, Jn is a Bessel function and k2
ρ + k2

z = k2. Then,

∇ψn =
dJn(kρρ)

dρ
ei(kzz+nφ) ρ̂ +

in

ρ
Jn(kρρ) e

i(kzz+nφ) φ̂ + ikzJn(kρρ) e
i(kzz+nφ) ẑ. (29)

We consider only the choice of a = ẑ/k in eq. (11), such that,

Tn = − in

kρ
Jn(kρρ) e

i(kzz+nφ) ρ̂ +
dJn(kρρ)

kdρ
ei(kzz+nφ) φ̂, (30)

and,

Pn = − ikz

k2

dJn(kρρ)

dρ
ei(kzz+nφ) ρ̂ +

kzn

k2ρ
Jn(kρρ) e

i(kzz+nφ) φ̂ − k2
ρ

k2
Jn(kρρ) e

i(kzz+nφ) ẑ, (31)

noting that Bessel’s equation has the form,

d

dρ

[
ρ
dJn(kρρ)

dρ

]
=

(
n2

ρ
− k2

ρρ

)
Jn(kρρ). (32)

Of, course, the force-free magnetic field has the form,11

Bn = Pn + Tn. (33)

For example,

ψ0 = J0(kρρ) e
ikzz, (34)

B0 =
ikρkz

k2
J1(kρρ) e

ikzz ρ̂ − kρ

k
J1(kρρ) e

ikzz φ̂ − k2
ρ

k2
J0(kρρ) e

ikzz ẑ. (35)

In particular, if kz = 0 then kρ = k and we obtain (to within a minus sign) the form (3),

B0(kz = 0) = J1(kρ) φ̂ + J0(kρ) ẑ, (36)

as found by Lundquist [9].

11The forms (30)-(31) and (33) are often called the Chandrasekhar-Kendall eigenfunctions, although they
were not explicitly displayed in [16]. They form a complete set of eigenfunctions of the curl operator [26].
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2.4.3 Solution in Spherical Coordinates

In spherical coordinates (r, θ, φ), solutions to the scalar Helmholtz equation (12) can be
written in various ways, as discussed in sec. 7.3 of [19], sec. 9.6 of [27], etc. A form that is
finite at the origin and on the z-axis is,

ψm
n = jn(kr)Pm

n (cos θ) eimφ, (37)

m and n are integers, n ≥ 0, |m| ≤ n, jn is a so-called spherical Bessel function,

j0(x) =
sin x

x
, j1(x) =

sin x

x2
− cos x

x
, j2(x) =

(
3

x2
− 1

x

)
sinx− 3 cos x

x2
, · · · , (38)

and Pm
n (y) is an associated Legendre function,

P 0
0 (y) = 1, P 0

1 (y) = y, P±1
1 (y) = ±

√
1 − y2, P 0

2 =
3y2 − 1

2
, · · · (39)

Then,

∇ψm
n =

∂ψm
n

∂r
r̂ +

1

r

∂ψm
n

∂θ
θ̂ +

1

r sin θ

∂ψm
n

∂φ
φ̂ (40)

=
djn(kr)

dr
Pm

n (cos θ) eimφ r̂ +
jn(kr)

r

dPm
n (cos θ)

dθ
eimφ θ̂ +

im

r sin θ
jn(kr)Pm

n (cos θ) eimφ φ̂.

a = r r̂

We consider first the choice of a = x = r r̂ in eq. (11), such that [16, 28, 29],

Tm
n =

im

sin θ
jn(kr)P

m
n (cos θ) eimφ θ̂ − jn(kr)

dPm
n (cos θ)

dθ
eimφ φ̂, (41)

and,

Pm
n =

n(n + 1)

kr
jn(kr)Pm

n (cos θ) eimφ r̂ +
1

kr

d[rjn(kr)]

dr

dPm
n (cos θ)

dθ
eimφ θ̂

+
im

kr sin θ

d[rjn(kr)]

dr
Pm

n (cos θ) eimφ φ̂, (42)

noting that the associated Legendre functions obey the differential equation,

1

sin θ

d

dθ

(
sin θ

dPm
n (cos θ)

dθ

)
=

(
m2

sin2 θ
− n(n+ 1)

)
Pm

n (cos θ). (43)

Of course, the force-free magnetic fields are,

Bm
n = Pm

n + Tm
n . (44)
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For example,

ψ0
0 =

sin kr

kr
, B0

0 = 0, (45)

ψ0
1 =

(
sin kr

k2r2
− cos kr

kr

)
cos θ , (46)

B0
1 = 2

(
sin kr

k3r3
− cos kr

k2r2

)
cos θ r̂ −

[
sin kr

kr

(
1 − 1

k2r2

)
+

cos kr

k2r2

]
sin θ θ̂

+

(
sin kr

k2r2
− cos kr

kr

)
sin θ φ̂. (47)

For small r, such that kr � 1,

B0
1(kr � 1) ≈ 2

3
(cos θ r̂ − sin θ θ̂) − kr sin θ

3
φ̂ =

2

3
ẑ − kr sin θ

3
φ̂. (48)

a = ẑ

We can also consider that a = ẑ = cos θ r̂ − sin θ θ̂ in eq. (11) [3], for which,

T =
1

r

∂ψ

∂φ
r̂ +

cot θ

r

∂ψ

∂φ
θ̂ −

(
sin θ

∂ψ

∂r
+

cos θ

r

∂ψ

∂θ

)
φ̂, (49)

and,

P = − 1

kr sin θ

[
∂

∂θ

(
sin 2θ

∂ψ

∂r
+

sin θ cos θ

r

∂ψ

∂θ

)
+

cot θ

r

∂2ψ

∂φ2

]
r̂

+
1

kr

[
1

r sin θ

∂2ψ

∂φ2 + sin θ
∂

∂r

(
r
∂φ

∂r

)
+ cos θ

∂2ψ

∂r∂θ

]
θ̂

+
1

kr

[
cot θ

∂2ψ

∂r∂φ
− 1

r

∂2ψ

∂θ∂φ

]
φ̂. (50)

For the case of no azimuthal dependence, ∂ψ/∂φ = 0, the force-free magnetic field has the
form,

B = P + T =
1

kr2 sin θ

∂Ψ

∂θ
r̂ − 1

kr sin θ

∂Ψ

∂r
θ̂ +

1

r sin θ
Ψ φ̂, (51)

where,12

Ψ = −
(
r sin2 θ

∂ψ

∂r
+ sin θ cos θ

∂ψ

∂θ

)
= −ρ∂ψ

∂ρ
, (53)

12The function Ψ is akin to a stream function in fluid dynamics, as discussed in secs. 4.5 and 5.1 of [2].
Of course, Ψ = −ρ ∂ψ/∂ρ can also be introduced in cylindrical coordinates (sec. 2.4.2) in case of azimuthal
symmetry, for which,

B = P + T =
1
kρ

∂Ψ
∂z

ρ̂ +
1
ρ
Ψ φ̂ +

1
kρ

∂Ψ
∂ρ

ẑ. (52)
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with ρ = r sin θ. Then, since (∇×B)φ = kBφ, the auxiliary function Ψ obeys the differential
equation,

∂2Ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)
+ k2Ψ = 0. (54)

For example,

Ψ0 =
sin kr

k
, B0 = − cos kr

kr sin θ
θ̂ +

sin kr

kr sin θ
φ̂, (55)

Ψ1 =
sin kr

k
cos θ, B1 = −sin kr

k2r2
r̂ − cos kr

kr
cot θ θ̂ +

sin kr

kr
cot θ φ̂, (56)

Ψ2 =

(
sin kr

k2r2
− cos kr

kr

)
sin2 θ , (57)

B2 = 2

(
sin kr

k3r3
− cos kr

k2r2

)
cos θ r̂ −

[
sin kr

kr

(
1 − 1

k2r2

)
+

cos kr

k2r2

]
sin θ θ̂

+

(
sin kr

k2r2
− cos kr

kr

)
sin θ φ̂ = B0

1. (58)

Note that B0 and B1 are infinite on the z-axis, which reminds us that the Pm
n in eq. (37)

could also be the associated Legendre functions of the second kind, Qm
n .13

The fields obtained using a = r r̂ are not independent of those found using a = ẑ. It is
shown in [29] that the former set of fields is complete.

2.5 Exponential Decay of a Force-Free Magnetic Field

The fourth Maxwell equation relates the curl of the magnetic field to the conduction current
J and the so-called displacement current ε0 ∂E/∂t,

∇ × B = μ0

(
J + ε0

∂E

∂t

)
. (59)

In astrophysical situations the time dependence of the currents and fields may be sufficiently
slow that the displacement-current term in eq. (59) can be neglected. In this case we can
write,

J(t) ≈ 1

μ0

∇× B(t). (60)

If the currents flow in a medium of electrical conductivity σ, they are related to the electric
field by J = σE, and eq. (60) tells us that,

E(t) ≈ 1

μ0σ
∇ × B(t). (61)

13The form B0 is probably what was meant to have been found in sec. III(a) of [12].
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Faraday’s law then gives,

∂B

∂t
= −∇× E ≈ − 1

μ0σ
∇ × (∇ × B) =

1

μ0σ
∇2B. (62)

If the quasistatic magnetic field is force-free, then from eq. (10) we have,

∂B

∂t
≈ − k2

μ0σ
B, (63)

such that [9],

B(x, t) ≈ B0(x) e−k2t/μ0σ, (64)

where B0(x) is a static, force-free magnetic field. Hence, if a force-free magnetic field could
be established in a (poorly) conducting medium, it would decay away slowly without change
to its spatial configuration [9].
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