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In this note I write out the argument of Sprangle et al. [1] at some length — and add
to it a result, eq. (9), that I have not seen published elsewhere. The specific point of this
argument is that the longitudinal component of the laser field near a focus, neglected in
the analysis of [2], cancels any energy transferred to a relativistic electron by the transverse
component.*

The Gaussian approximation to a laser beam that propagates along the +z axis and is
polarized in the x direction is, to leading order,
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where p? = (22 + y?)/w?, the radius of the waist is wg, ¢ = z/z9, the Rayleigh range is,
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the phase is,

o =kz —wt, (3)

the frequency of the wave is w, the wave number is k = w/c, the wavelength is A and ¢ is
the speed of light.

Expression (1) describes the main features of the focus of the laser beam, but it does not
satisfy the Maxwell equation V - E = 0. To see this, note that a divergence-free field that
points only in the x direction cannot vary with .

We find below that an electric field which satisfies Maxwell’s equations in the next ap-
proximation has a small longitudinal component, and that this apparently small component
is sufficient to cancel completely any net energy transfer to a relativistic electron that appears
possible if only eq. (1) is used.

Equation (1) describes a continuous-wave laser beam, rather than a pulse.

Equation (1) of [2] is the same as my eq. (1) with the addition of a factor g(¢) that
describes the laser pulse envelope in time. The new part of what follows is to find a condition
on the form of g so that (1) satisfies Maxwell’s equations to a good approximation. I will find
that the assumption in [2] that g = sin?(¢/¢p,) for 0 < p/p, < m and zero elsewhere is not
satisfactory. This oversight is in addition to the erroneous claim in [2] that the longitudinal
part of field E can be neglected.

Before I deal with the issue of acceleration of electrons, I review the derivation of a better
approximation to a Gaussian laser pulse, following [3]. The knowledgeable reader might want
to skip ahead to eqgs. (26) and (27).

LA small acceleration of electrons “in vacuum” by an intense laser was reported in [2], but this is a subtle
effect, not explained in the first approximation presented there.



A key insight of [3] is that the form of eq. (1) can more properly be used for the vector
potential A than for the electric field E. In general, the divergence of the vector potential
need not be zero and there are solutions to Maxwell’s equations with nonuniform vector
potential that point only along the z-axis.

A second useful insight is that when the wave equation for the vector potential is written
in terms of the dimensionless variables,
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then a series expansion suggests itself. Namely, the focal region has transverse and longitu-

dinal extent in the ratio,
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The aspect ratio 0y (also the diffraction angle) is typically much less than one, and so can
serve as the expansion parameter.

We seek fields that propagate in the +z direction, have limited transverse extent, and

for which the vector potential has only an = component. We try,

A(r,t) = x¢(r)g(p) €, (6)

where 1) and g vary “slowly.” The vector potential must satisfy the free-space wave equation,
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Inserting trial solution (6) into (7) we find that,
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where ¢’ = dg/dp. Since 9 is a function of r while g and ¢’ are functions of the phase ¢,
eq. (8) cannot be satisfied in general. Often the discussion is restricted to the case where
g =0, i.e., to continuous waves. However, we see that to proceed with our description of

pulsed beams we must accept the condition that,
J < g. (9)

First, consider the proposal of [2] that g = sin*(¢/p,). Then, ¢'/g = (2/p,) cot(p/v,).
Even for the plausible restriction that ¢, > 2, ¢’/g blows up at the beginning and end of
the pulse (which is defined on the interval 0 < ¢ < 7yp,).

Another popular form for a laser pulse is a Gaussian: g = exp|—(¢/p,)?]. Then, ¢'/g =
—2¢ /2 which does not satisfy (9) for || 2 @,

A more appropriate form for a pulsed beam is a hyperbolic secant (as arises in studies of
solitons?),

9(p) = Sech%))- (10)

2See, for example, [4].



Then, ¢'/g = —(1/¢,) tanh(v/p,), which is much less than one everywhere for ¢, > 1.

One might hope that a poor approximation would suffice in regions where the field is
weak. But, when the field is probed by a moving electron, the latter spends a long time in
the weak-field region, so time integrals such as energy transfer have significant contributions
from that region.

Hence, I strongly recommend that future numerical (and analytic) calculations involving
laser pulses use form (10).

We now suppose that condition (9) is satisfied, so that (8) can be approximated as,
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in terms of the dimensionless variables introduced in eqs. (4-5). This form suggests the series
expansion,
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Inserting this into eq. (11) and collecting terms of order #) and 63, we find,
o
i 4i—2 =0 14
VLQ% + 4 ag ) ( )
and,
Oy 0%
2 2 0
Vi, + 426—§ =92 (15)

respectively. Equation (14) can be recognized as the paraxial wave equation whose Gaussian
solution was given in eq. (1). That is,

Vo= fe (16)

where,
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In [3], the solution to eq. (15) was cleverly guessed,
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although we will not need this here.
We work in the Lorentz gauge (and Gaussian units), so the scalar potential ¢ obeys,
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Similarly to eq. (6), we suppose that ¢ can be written as,
o(r.t) = D(r)g(p) . (20)



Then,
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when condition (9) is satisfied. In this case,
¢ = —%V ‘A (22)
The electric and magnetic fields can now be deduced from the approximate vector potential,
A = Gy g(0) 7%, (23)
via, 5
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and,
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again approximating as one the factors 1 —ig’/g that arise. The results accurate to order 6
are, after dividing out a factor of ik,
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These expression satisfy V - E =0 = V - B plus terms of order 9(2).

After these lengthy preliminaries we are ready to consider vacuum laser acceleration of
electrons.

We consider an electron moving at velocity ¢ along the line x = 20, where 0 is a small
angle. The electron passes through a laser field given by eqs. (26-27), with y = 0 always,
and we suppose that it passes the origin at t = 0. In terms of the dimensionless variables &,

¢ and p, the trajectory is,
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The electric field component along the electron’s trajectory is,
Ey=FE,sin + E,cos = E,0(1 —ifq)=FE,0f, (29)
for small 6, noting that eqs. (26) and (28) lead to,

E,=—ify fEEy, = —i0 f<E,, (30)
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and that eq. (17) leads to the identity,

1—ifs=f. (31)
The electron has coordinate z at time t = z/(ccos ) so,
k26 0
—kr—wt~ — =——. 32
p=kz—w 5 P S (32)
Then,
E, = Eofge?” e
S Eo fge I P gy g8, 3
using eqgs. (26), (31) and (32). Inserting this into eq. (29) we have,
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again neglecting a term in ¢’/g. That is, the force on the electron along its trajectory can be
derived from a potential. The change in energy along the trajectory is then just the change
in the potential. However, the potential,
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has the same value at ¢ = —oo and +o0, so the (relativistic) electron gains no net energy as

it crosses the laser beam.

This is the argument of [1], with the addition that it holds for laser pulses as well as for
continuous waves, so long as condition (9) is satisfied — which condition is required if (26)
and (27) are to be (approximate) solutions to Maxwell’s equations.

Everyone agrees that if one uses E, from (26) but ignores E,, a net energy gain will be
calculated for a free electron crossing a laser beam. See also [5].

The interesting case of extremely short pulses (¢'/g =~ 1) has been considered in [6].
The above analysis does not hold in this limit, and significant energy can in principle be
transferred from a single-cycle pulse to an electron. However, for a pulse of even a few cycles,
the energy transfer is greatly suppressed.
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