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1 Problem

A flyball governor consists of a vertical shaft with one or more arms connected to its apex
with hinges. The entire system is set in motion by turning the shaft at angular velocity Ω.
For large Ω, the angle θ of the arms to the vertical will reach some specificed value, engaging
some mechanical switch to limit further increase in the angular velocity.

For a given value of Ω, deduce the equilibrium angle θ0 and the frequency ω of small
oscillations about the equilbrium.

You may take the governor to have a single massless arm of length l with point mass m
at its extremity. The hinge constrains the motion of the arm to be in a vertical plane that
is fixed to (rotates with) the shaft.
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2 Solution

While the equilibrium condition is readliy found vis F = ma in the rotating frame, the
oscillation analysis is expediently accomplished via Lagrange’s method.

Use angle θ as the one generalized coorindate. Then, the kinetic energy is due to motion
in both vertical and horizontal planes,

T =
1

2
ml2θ̇

2
+

1

2
ml2 sin2 θΩ2.

The potential energy due to gravity is just,

V = −mgl cos θ.

The Lagrangian is then,

L = T − V =
1

2
ml2θ̇

2
+

1

2
ml2 sin2 θΩ2 + mgl cos θ.

While we could take derivatives to find the equation of motion, this problem is suitable for
solution by the effective-potential method. To expedite the notation, I divide the Lagrangian

by ml2 and introduce ω0 =
√

g/l, the frequency of oscillation of a simple pendulum of length
l. Then,

L =
1

2
θ̇

2
+

1

2
Ω2 sin2 θ + ω2

0 cos θ ≡ 1

2
θ̇

2 − Veff ,

with,

Veff = −1

2
Ω2 sin2 θ − ω2

0 cos θ.

The first term in the effective potential is concave downwards, but small for small Ω, while
the second is concave upwards and independent of Ω. For small Ω, the stable equilibrium
point will be at θ = 0, but for large enough Ω, the equilibrium point will be at some nonzero
θ.

The equilibrium point(s) θ0 are found by setting dVeff/dθ = 0, and the frequencies of

small oscillation about equilibrium are then given by, ω =
√

d2Veff(θ0)/dθ2.

dVeff

dθ
= −Ω2 sin θ cos θ + ω2

0 sin θ.

Thus, the possible equilibrium angles are

θ0 = 0 and cos−1 ω2
0

Ω2
,

where the second point does not exist unless Ω > ω0. The latter case is, however, the desired
operating region of the flyball governor. (I ignore the case θ0 = π as ‘obviously’ unstable for
all Ω.)

Taking the second derivative,

d2Veff

dθ2 = −Ω2 cos 2θ + ω2
0 cos θ.
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For the case θ0 = 0 we then have,

ω = ω0

√
1 − Ω2

ω2
0

, (θ0 = 0).

Hence, this is the stable equilibrium point until Ω > ω0. For the latter case, we find,

ω = Ω

√
1 − ω4

0

Ω4
,

(
cos θ0 =

ω2
0

Ω2

)
.


