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1 Problem

In Newton’s theory of gravity the acceleration of a (small) mass at the surface of the Earth is
g, independent of the velocity of the mass, where in the approximation of a spherical Earth
of mass ME and radius RE , g = GME/R2

E , with G being Newton’s constant of gravitation.
Deduce the velocity dependence of the acceleration in Einstein’s theory of general relativity.

2 Solution

Einstein deduced (very briefly on p. 834 of [1], and in slightly more detail on pp. 820-822
of [2]) that the gravitational deflection of light according to general relativity is twice the
“Newtonian” value.1 Einstein did not deduce the acceleration of light (or that of other fast-
moving particles), which has perhaps left the impression that the acceleration at the surface
of the Earth is no different from that in Newton’s theory (because curvature of space occurs
only over large distances in “outer space”).

Indeed, the topic of the acceleration due to gravity in Einstein’s theory seems to be
rarely discussed. It appears in somewhat disguised form in sec. VI.C, p. 2065 of [7] (ti-
tled “Laboratory experiments to test relativistic gravity”), where I interpret eq. (6.18) as
implying,

a = g(1 + v2/c2), (1)

1In [1, 2], Einstein did not refer to Newton, but to his earlier computations of the gravitational deflection
of light [3, 4] based on the effect of gravity on the speed of light. In his book of 1920 [5], Einstein stated
(p. 153 of the English translation):

It may be added that, according to the theory, half of this deflection is produced by the
Newtonian field of attraction of the sun, and the other half by the geometrical modification
(“curvature”) of space caused by the sun.

Newton may not have explicitly stated that light is subject to the acceleration due to gravity, but he came
very close to this in Questions 29 and 31, pp. 345 and 350, of his Opticks [6]:

Quest. 29. Are not the Rays of Light very small Bodies emitted from shining Substances?

Quest. 31. Have not the small Particles of Bodies certain Powers, Virtues, or Forces, by
which they act at a distance, not only upon the Rays of Light for reflecting, refracting, and
inflecting them, but also upon one another for producing a great Part of the Phænomena
of Nature? For it’s well known, that Bodies act one upon another by the Attractions of
Gravity, Magnetism, and Electricity; and these Instances shew the Tenor and Course of
Nature, and make it not improbable but that there may be more attractive Powers than
these.

1



for horizontal velocity v of a test mass at the Earth’s surface, with c as the speed of light in
vacuum (at the Earth’s surface). The only other discussions that I have found is at the end
of [8] (Hilbert, 1916)2 which results are transcribed in sec. 6.7 of [9], where it is claimed that
the acceleration for vertical motion at the surface of the Earth is,3,4,5,6

a = g(1 − 3v2/c2) →
⎧⎨
⎩ g (v = 0),

−2g (v = c).
(2)

However, as remarked on p. 191 of [64]:

Whenever we obtain a prediction from general relativity the question always arises (or
should arise) whether the result obtained really refers to an objective physical measurement
or whether it has folded into it arbitrary subjective elements dependent on our choice of
coordinate systems.

And, as somewhat sourly observed in the second paragraph of [65]:

... the fact that (Einstein’s equations) retain their form under general coordinate transfor-
mation is an embarrassment rather than an advantage.

The standoffish attitude of the physics community to the issue of the gravitational accel-
eration of fast-moving particles is perhaps related to the comment of Born [66] on general
relativity:

Its connections with experience were slender. It appealed to me like a great work of art, to
be enjoyed and admired from a distance.

As will be discussed below, corrections to the flat-space metric tensor at the surface of
the Earth are of order RM/RE ≈ 10−9, where RM = 2GM/c2 is the Schwarzschild radius
corresponding to mass M , which is about 1 cm for the Earth and 3 km for the Sun, and yet
general-relativistic corrections to the Newtonian gravitational acceleration of a fast-moving
mass at the surface of a spherical mass are of order unity. This is rather counterintuitive,
but is little discussed in the literature.

Einstein deftly avoided this issue in his discussion [1, 2] of the gravitational deflection
of light by only considering the deflection according to observers far from the surface of the
deflecting mass.7

Einstein’s original discussion [1] was based on an approximation to the metric of a static,
spherical mass, but shortly thereafter an “exact” metric was found by Schwarzschild [68].

2April 21, 2020. This topic is also discussed, with some controversy, in [10]-[52].
3The gravitational deflection of high-speed particles was considered in [53] (1920) using what appears

to be a spurious version of isotropic coordinates, with a claim of upwards acceleration for particles with
v > c/

√
3, as in eq. (2). This was objected to in [54], followed by a more usual discussion of the gravitational

deflection of light without mention of acceleration.
4It is claimed in [55] that the gravitational force of a spherical mass M on a particle of energy E, with

effective mass m = E/c2 is F = −GMm[(1 + β2)r − (β · r)β]/r3.
5The present paper emphasizes the acceleration of “point” masses. For extended objects, internal motion

can affect the acceleration of their “center of mass” in curved space [56]-[62].
6A discussion of rocket-assisted acceleration of particles in circular orbits near a black hole is given in

[63].
7A typical example of this tradition is [67], which discusses the gravitational deflection of fast-moving

particles, mentioning acceleration but only computing deflection angles.
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In principle, the rotation of the Earth could add an effect of “magnetic gravity”, but this
is very small as first noted by de Sitter [69], and we will only consider the case of spherical
symmetry here.8

2.1 Spherically Symmetric Metrics

This section is something of a historical digression. A “uniform” gravitational field is dis-
cussed in Appendix A below.

Schwarzschild [68] looked for a static, spherically symmetric solution to Einstein’s equa-
tions for a point mass M at the origin in spherical coordinates xμ = (t, r, θ, φ) such that the
square of the invariant interval (line element) for small motion of a test mass would have the
form, with C ′ = dC/dr,9

ds2 = gαβ dxα dxβ = A c2 dt2 − B dr2 − C2 dΩ2, dΩ2 = (dθ2 + sin2 θ dφ2), (3)

where A, B
r→∞−→ 1, and C

r→∞−→ r, such that spacetime is asymptotically flat at large distances

from the mass. The circumference of a circle of radius r is 2πC (not 2πr),10 which is a
reminder that the physical interpretation of the coordinate r (and t) is not obvious.

A general result11 is that A and B can be written in terms of C(r) and the Schwarzschild
radius RM , such that the line element (3) takes the form,

ds2 =

(
1 − RM

C

)
c2 dt2 − C ′2

1 − RM/C
dr2 − C2 (dθ2 + sin2 θ dφ2), (4)

Over the years, many variants of the Schwarzschild metric have been considered, with
various forms of the function C(r),

1. Schwarzschild [68] (Jan. 16, 1916): C = R = (r3 + R3
M)1/3.

Note that Schwarzschild’s form is not that commonly associated with the “Schwarzschild”
metric, which latter is actually the form of item 2.

2. Droste [10] (May 27, 1916);12 Flamm [78] (Sept. 3, 1916); Hilbert [8] (Dec. 23, 1916);
Weyl [79] (Aug. 8, 1917): C = r.

3. “Isotropic” Coordinates, Pauli [80] (1920):13 C = r(1 + RM/4r)2.

8It has been shown in [70]-[74] that the only spherically symmetric solution to Einstein’s equations with
no source masses is for a static metric that can be obtained by coordinate transformations of eq. (4) with
C = r. This result, known as Birkhoff’s theorem, is sometimes misstated that eq. (4) with C = r is the only
possible form of a spherically symmetric metric.

Kerr [75] has found a static metric for a rotating spherical mass.
9Strictly, Schwarzschild wrote F for A, G + Hr2 for B, and Gr2 for C2.

10Apparently, C is sometimes called the “curvature radius”.
11This result is deduced in Appendix A of the paper [76], whose polemic against the notion of a “black

hole” was carried further in [77].
12Droste’s paper was discussed by de Sitter (Aug. 1916) [69].
13For isotropic coordinates, B = C ′2/(1−Rm/C) = C2/r2, such that the spatial part of the line element

(4) is −(1 + RM/4r)4(dr2 + r2dθ2 + r2 sin2 θ dφ2), which is isotropic. Hence, these coordinates may be the
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4. Lanczos [81] (Oct. 1922), Fock, p. 194 of [82] (1959):14 C = r + RM/2.

5. Brillouin [83] (Jan. 1923): C = r + RM .

Although it is not our main concern here, we note that for all of the above forms the
metric is “peculiar” (if not “singular”) at r = RM , and the physical meaning of the solutions
is unclear for smaller r. An eventual understanding emerged [84, 85] that a test mass cannot
have constant r at values less than RM , such that the notion of a static mass of radius
0 < r < RM is not valid, and physically reasonable metrics in this regime must be time-
dependent.

The first hint of this resolution to the (non)issue of a “singularity” at r = RM was given
by Lemâıtre [86] (1933), when he found the (diagonal), time-dependent metric,

ds2 = c2 dt2 −
(

2RM

3(r − t)

)2/3

dr2 −
(

3
√

RM(r − t)

2

)4/3

dΩ2. (6)

The metric tensor is also diagonal for all of the Schwarzschild metrics. Time-dependent
metrics with off-diagonal elements have also been considered in:

1. Gullstrand [87] (May 25, 1921); Painlevé [88] (Oct. 1921),

ds2 =

(
1 − RM

r

)
c2 dt2 − 2

√
r

RM
c dt dr − dr2 − r2dΩ2. (7)

2. Szekeres [89] (May 26, 1959); Kruskal [90] (Dec. 21, 1959); (extending earlier work of
Synge [65]),

ds2 =
4RM

r
e−r/RM (c2 dt2 − dr2) − r2dΩ2, (8)

c2 t2 − r2 =

(
1 − r

RM

)
er/RM ,

2c r t

r2 + c2 t2
= tanh

c t

RM
. (9)

3. Penrose [91] (1964) built on earlier work by Finkelstein [92] (1958) and a much earlier
hint by Eddington [93] (1924) to provide yet another time-dependent, nondiagonal
metric.15

“closest” to those for flat space, if one emphasizes spatial geometry. These coordinates appear without
attribution in eq. (421b) of [80] (Pauli, 1920). For completeness, A = (1 − RM/4r)2/(1 + RM/4r)2.

In [53], A = 1 − RM/r and B − Cr2 = 1 + RM/r, which are a kind of isotropic coordinates, but they do
not correspond to a static mass M .

14Lanczos/Fock coordinates are the spherical-coordinate version of “harmonic” coordinates xμ that are
asymptotically Cartesian and obey Laplace’s equation �xμ = 0 everywhere, eq. (5) of [81], p. 174 of [82].
On p. 188, Fock showed that this implies (in our notation, where V 2 = c2(1−RM/C), F 2 = C ′2/(1−RM/C)
and ρ = C),

2rC ′ =
d

dr

[
C2

C ′

(
1 − RM

C

)]
= 2C − RM +

C ′′C
C ′2 (RM − 2C), (5)

which is satisfied by C = r + RM/2. This form first appeared in eq. (16) of [81].
15Penrose gave a different vision of the metric in [94]. This is illustrated in Chap. 8 of [95]; Chaps. 6-7

illustrate Kruskal coordinates.
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2.2 Equations of Motion

We now consider the equations of motion for a test particle (of small mass/energy compared
to M) located on the x axis at (r, θ, φ) = (r, π/2, 0) at time t = 0, and which moves in the
“equatorial” plane with θ = π/2 always.16 We only consider metrics of the form (4), and
compute the geodesic equations (eqs. (2) and (7) of [1]),

d2xλ

dp2
= −Γλ

μν

dxμ

dp

dxν

dp
, where Γλ

μν =
1

2
gλα

(
∂gμα

∂xν
+

∂gνα

∂xμ
− ∂gμν

∂xα

)
, (10)

in which the parameter p can be taken as the proper time τ = s/c for a particle with nonzero
mass.

The generalized accelerations d2xλ/dp2 for geodesic motion in “curved” spacetime are the
sums of terms that are products of generalized velocities, dxμ/dp and dxν/dp with factors,
Γλ

μν = Christoffel symbols, that characterize the distortions of spacetime due to the presence
of mass/energy.

In this view, it is less surprising that the acceleration due to “gravity” is velocity de-
pendent, than that there is any effect independent of velocity. The latter occurs in that
the “velocity” dt/dp for the time coordinate is essentially a constant (except in regions of
extreme curvature). With this understanding, we should then expect that the accelerations
have “corrections” of order unity for spatial velocities dx/dp that are of order unity (which
in “relativistic” language means velocities of order the speed of light).

Thus, it is surprising (to this author) that 100 years of discussion of general relativity
place such little emphasis on these “obvious” aspects of the geodesic equations (10).17

For the Christoffel symbols Γλ
μν we can refer to the compilation in [96],18 identifying

x1 = r, x2 = θ, x3 = φ and x4 = t. Then, in the notation of [96], the line element (4) tells
us that,

A[96] =
C ′2(r)

1 − RM/C(r)
, B[96] = C2(r), C[96] = C2(r) sin2 θ, D[96] = c2

(
1 − RM

C(r)

)
.(11)

The nonzero Christoffel symbols are then, from p. 560 of [96],

Γr
rr =

A′
[96]

2A[96]

=
C ′′

C ′ −
RMC ′

2C(C −RM )
, Γr

θθ = −
B ′

[96]

2A[96]

=
RM − C

C ′ , (12)

Γr
φφ = −

C ′
[96]

2A[96]

=
RM −C

C ′ sin2 θ, Γr
tt =

D′
[96]

2A[96]

=
c2RM(C − RM)

2C ′C3
, (13)

Γθ
rθ = Γθ

θr = Γφ
rφ = Γφ

φr =
B ′

[96]

2B[96]

=
C ′

C
, Γθ

φφ = − 1

2B[96]

∂C[96]

∂θ
= − sin θ cos θ, (14)

Γφ
φθ =

1

2C[96]

∂C[96]

∂θ
= Γφ

θφ = cot θ, Γt
rt = Γt

tr =
D′

[96]

2D[96]

=
RMC ′

2C(C − RM)
, (15)

16This section follows sec. 3.8.4 of [64], which follows p. 68 ff of [8].
17While applications of the special relativity tend to emphasize physics associated with high velocities,

applications of general relativity tend to emphasize rather low-velocity situations. An exception is the
gravitational deflection of light, which is usually treated in a manner that makes no use of the notion of the
gravitational acceleration of a fast-moving object.

18The author, Dingle, of [96] later became a vocal doubter of the theory of relativity. See the bibliography
of [97].
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where A′
[96]

= ∂A[96]/∂r, etc. Using these, the four equations of motion (10) become,

d2r

dp2
= −

A′
[96]

2A[96]

(
dr

dp

)2

+
B ′

[96]

2A[96]

(
dθ

dp

)2

+
C ′

[96]

2A[96]

(
dφ

dp

)2

−
D′

[96]

2A[96]

(
dt

dp

)2

, (16)

d2θ

dp2
= −2C ′

C

dr

dp

dθ

dp
+ sin θ cos θ

(
dφ

dp

)2

, (17)

d2φ

dp2
= −2C ′

C

dr

dp

dφ

dp
− 2 cot θ

dφ

dp

dθ

dp
= − 2

C

dC

dp

dφ

dp
− 2 cot θ

dφ

dp

dθ

dp
, (18)

d2t

dp2
= − RMC ′

C(C − RM )

dr

dp

dt

dp
= − RM

C(C −RM )

dC

dp

dt

dp
. (19)

2.2.1 Constants of the Motion

As we consider only the case of motion in the plane θ = π/2, the θ-equation (17) is auto-
matically satisfied, and dθ/dp = 0 in eqs. (16) and (18). Then, eq. (18) leads to,

d(dφ/dp)/dp

dφ/dp
+ 2

dC/dp

C
= 0, ⇒ ln

dφ

dp
+ lnC2 = const, ⇒ C2dφ

dp
=

J

c
,(20)

where the constant J is related to the angular momentum (per unit rest mass) of the test
particle.

Similarly, eq. (19) leads to, using Dwight 101.1 [98],

d(dt/dp)/dp

dt/dp
+ RM

dC/dp

C(C − RM)
= 0, ⇒ ln

dt

dp
+ ln

(
1 − RM

C

)
= const. (21)

The choice of this constant turns out to be unimportant in the discussion of acceleration,
secs. 2.2.3-3 below. On p. 186 of [64], it was recommended to take the constant as zero,
which has the appeal that then parameter p goes to t for r � RM . However, when discussing
circular orbits, Appendix C below, it proves to be more convenient to take the constant to
be ln(E/c3), where E is a conserved “energy” (per unit rest mass). Then, the “velocity”
dt/dp becomes,

dt

dp
=

E

c3

1

1 −RM/C
. (22)

For large r, dt/dp → E/c3, and p → tc3/E (which is just ct in case of a massive particle at
rest).

Another constant of the motion can be found via a first integral of eq. (16), as discussed
in Appendix C below.

2.2.2 “Antigravity” in the Radial Equation of Motion

We can now re-express derivatives with respect to parameter p as derivatives with respect
to coordinate t,

dr

dp
=

dt

dp

dr

dt
=

E

c3

C

C − RM

dr

dt
,

dφ

dp
=

dt

dp

dφ

dt
=

E

c3

C

C − RM

dφ

dt
,(23)

d2r

dp2
=

d

dp

dr

dp
=

E

c3

dt

dp

d

dt

[
C

C −RM

dr

dt

]
=

E2

c6

(
C

C − RM

)2
[

d2r

dt2
− RMC ′

C(C − RM )

(
dr

dt

)2
]

,(24)
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Then, eq. (16) leads to, usings eqs. (12)-(13) with θ = π/2,

d2r

dt2
= −c2 RM(C − RM)

2C ′C3
−
(

C ′′

C ′ −
3RMC ′

2C(C − RM)

)(
dr

dt

)2

− RM − C

C ′

(
dφ

dt

)2

. (25)

If gravity is negligible, then RM = 0, C = r, and eq. (25) simplifies to,

ar =
d2r

dt2
− r

(
dφ

dt

)2

= 0. (26)

That is, the radial component of the acceleration is zero when there is no gravity (or any
other force) acting on the test particle. Further, eq. (20) becomes r2 dφ/dt = constant,
such that aφ(θ = π/2) = r d2φ/dt2 + 2(dr/dt)(dφ/dt) = 0. The total acceleration is zero,
spacetime is flat, and the particle’s trajectory is a straight line (for nonzero velocity).

In Einstein’s theory, the existence of a mass M (other than the mass m of the test particle)
“curves” the spacetime experienced by the test particle, which adds velocity-dependent terms
of order RM to the equations of motion, that represent the effect of gravity of mass M on
the test particle.19

Note that in eq. (25), C ′ = 1 leads to a term RM(dφ/dt)2 = (c2RM/r2)(v2
φ/c

2) = 2gv2
φ/c

2,
recalling that the Earth’s surface gravitational acceleration is g = GM/r2 = c2RM/2r2.
Hence, the result in case of horizontal motion depends on the form of C , i.e., on the choice
of coordinates!

For the “standard” Schwarzschild line element (4) with C = r, eq. (25) leads to,

ar ≡ d2r

dt2
− r

(
dφ

dt

)2

= −c2RM

2r2

[
1 − RM

r
− 3v2

r

c2(1 − RM/r)
+ 2

v2
φ

c2

]
(C = r)

≈ −g

(
1 − 3v2

r

c2
+ 2

v2
φ

c2

)
, (27)

setting vr = dr/dt, vφ = r dφ/dt, and the approximation holds for r � RM .
This is suggestive,20 but a bit odd in that the dependence of the radial acceleration ar

on velocity is not isotropic.
The result (27) holds for C = r, which is the “standard” parameterization of the

Schwarzschild metric,21 and also holds for Schwarzschild’s original choice, C = (r3+R3
M)1/3 ≈

r + R3
M/3r2.

For Brillouin’s coordinates, with C = r + RM , the gravitational acceleration ar is inde-
pendent of vφ (but not vr),

ar =
d2r

dt2
− r

(
dφ

dt

)2

≈ −g

(
1 − 3v2

r

c2

)
(C = r + RM ). (28)

19As summarized by Wheeler, p. xi of [99]: “Spacetime grips mass, telling it how to move; mass grips
spacetime telling it how to curve.”

20We certainly should be impressed that the radial acceleration predicted for a test particle with r � RM

and v � c is the Newtonian value g. This should perhaps be called the zeroth experimental test of general
relativity.

21Thus, we verify the claim of eq. (2), where “standard” Schwarzschild coordinates were used, with vφ = 0
and vr ≡ v.
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If we use isotropic coordinates, C = r(1 + RM/4r)2 ≈ r + RM/2, C ′ ≈ 1, C ′′ ≈ 0, and
now the approximation to eq. (25) is,22

ar =
d2r

dt2
− r

(
dφ

dt

)2

≈ −g

(
1 − 3v2

r

c2
+

v2
φ

c2

)
(C = r[1 + RM/4r]2). (29)

Thus, we reproduce the claim of our eq. (1), following p. 2065 of [7], that objects with
large horizontal velocity (and negligible vr) fall with radial acceleration ar = −2g if we use
isotropic coordinates, but not for “standard” Schwarzschild coordinates (for which ar = −3g
when vr = 0). It remains slightly disconcerting that switching from isotropic to “standard”
coordinates at the surface of the Earth, where RM/r � 1 makes a 50% difference in the
acceleration due to gravity for fast, horizontally moving particles.

It is somewhat comforting that all static Schwarzschild metrics lead to the same expres-
sion for vertical acceleration (ar = −g(1− 3v2

r/c
2) when vφ = 0) at the surface of the Earth,

but it is perhaps surprising that this acceleration is upwards for |vr| > c/
√

3, as in eq. (2).23

We could say that the gravitational force is repulsive, rather than attractive, in case of a
high-speed particle moving vertically (either up or down); more dramatically, we could say
that “antigravity” occurs in this case.

The prediction of “antigravity” for vertical motion of high-speed particles is one of the
most dramatic consequences of Einstein’s theory of general relativity, yet it is almost un-
known (despite being deduced by Hilbert in 1916 [8]). This prediction has been confirmed
experimentally, but the results are never discussed as providing this confirmation.

In particular, if a fast-moving particle falls from the Earth towards the Sun, then (once
the effect of Earth’s gravity can be ignored) its velocity decreases, rather than increases,
according to eqs. (2), (27) and (29).24 Hence, the fall time of the particle is longer than that
expected in Newton’s theory of gravity. If the particle is a photon, and is reflected back to
the Earth, the time of the return trip is the same, longer time, according to time-reversal
invariance.

This has been investigated in the radar-time-delay experiments of Shapiro et al. [101,
102, 103], in which signals sent from the Earth to Venus, and then reflected back to Earth,
were observed to take longer than the Newtonian prediction, by amounts in agreement
with Einstein’s theory. However, the acceleration of the fast particles (photons) was never
mentioned.25

22Equation (29) also holds for Lanczos/Fock coordinates, C = r + RM/2.
23If a particle is shot upwards from the surface of the Earth with v > c/

√
3, which far exceeds the Earth’s

escape velocity, its velocity increases, rather than decreases, with time. However, the relative increase in
velocity is small, since g decreases as 1/r2 for r > rE .

24A simplified derivation of this is given in [100], which omits relating the change in velocity to an
acceleration.

25The gravitational deflection of light and the time-delay for light during largely vertical travel could be
considered as an examples of effects that combine general relativity and quantum physics, but apparently
Einstein hesitated to make this connection, and instead emphasized an analysis via a Huygens’ construction
for wave fronts in [1, 2].

A quantum correction to the gravitational deflection of light has been considered in [104].
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2.2.3 The Azimuthal Equation of Motion

Similarly to eq. (24), we have that,

d2φ

dp2
=

d

dp

dφ

dp
=

dt

dp

d

dt

[
C

C − RM

dφ

dt

]
=

(
C

C − RM

)2 [
d2φ

dt2
− RMC ′

C(C − RM )

dr

dt

dφ

dt

]
. (30)

Then, for constant θ as considered here, eq (18) can be written as,

aφ = C
d2φ

dt2
+ 2C ′dr

dt

dφ

dt
= − RMC ′

C(C − RM)

dr

dt

dφ

dt
, (31)

noting that 2πC rather than 2πr is the circumference of a circle of radius r, For r � RM ,
where C ≈ r, this becomes,

aφ = r
d2φ

dt2
+ 2

dr

dt

dφ

dt
= 0, (32)

which vanishes as might be expected.
However, for motion near a black hole eq. (31) indicates that their exists a nonzero

azimuthal acceleration, opposite to the direction of the azimuthal velocity C dφ/dt if dr/dt
is negative. This azimuthal acceleration diverges as r → RM in “standard” Schwarzschild
coordinates, but not in the other Schwarzschild coordinate systems considered in sec. 2.1.

3 Comments

The result (29), that in isotropic coordinates the vertical acceleration due to gravity at the
surface of the Earth is 2g downwards for horizontal velocity v ≈ c but 2g upwards for vertical
motion, is hardly compatible with Galileo’s hypothesis of universal gravitational acceleration
(at g downwards).26

Galileo’s law of universal acceleration is the basis of the equivalence principle, so the result
(29), that the acceleration due to gravity depends on velocity, is in conflict with that principle
(taking that principle to be that the acceleration is independent, not only of the mass, but
of all other properties of a “body”).27 That is, an accelerated observer in flat spacetime
would regard the motion of “free” bodies as having the same acceleration independent of
their velocity. Thus, in principle one could determine whether or not a gravitational field is

26On p. 72 of the English translation of Galileo’s Discorsi [105] Salviati says:

... in a medium totally devoid of resistance all would bodies fall with the same speed.

The meaning of “speed” is perhaps not clear here, so Galileo began a long discussion of “naturally accelerated
motion” on p. 160, including on p. 164:

Imagine a heavy stone held in the air at rest; the support is removed and the stone set free;
then since it is heavier than the air it begins to fall, not with uniform motion but slowly at
the beginning with a continuously accelerated motion.

27Jan. 25, 2022. A more careful statements of the equivalence principle is that the acceleration is inde-
pendent of the mass for bodies of the same velocity. See, for example, [106, 107].
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present (i.e., that spacetime is curved) by performing experiments inside a small box as to
the acceleration of high-speed particles moving in different directions.28

A speculation is that the “antigravity” between masses with large relative radial velocity
might be related to the “dark energy” problem.

A Appendix: “Uniform” Gravitational Field

This Appendix was written on April 25, 2020.
For a “uniform” gravitational field, using coordinates (x0, x1, x2, x3) = (t, x, y, z), the

metric tensors gij and gij can be taken to have nonzero components,29

g00 =
1

g00
= c2f2(z), f(0) = 1, g11 = g22 = g33 = g11 = g22 = g33 = −1, (33)

such that gik gjk = δj
i . The nonzero Christoffel symbols are,

c2f2Γ0
03 = c2f2Γ0

30 = Γ3
00 = c2f

df

dz
≡ c2ff ′. (34)

The geodesic equations of motion (10) are,

d2x

dp2
=

d2y

dp2
= 0, (35)

d2z

dp2
= −c2ff ′

(
dt

dp

)2

, (36)

d2t

dp2
= −2f ′

f

dz

dp

dt

dp
. (37)

For a particle with mass, the parameter p can be taken as the proper time τ , which is
also related by,

c2dτ 2 = gμνdxμ dxν = (c2f2 − v2)dt2, (38)

dτ = h dt, h =

√
f2 − v2

c2
, (39)

where v = dx/dt is the 3-velocity of the particle. Hence,

0 =
d2x

dτ 2
=

1

h

d

dt

(
1

h

dx

dt

)
=

1

h2

d2x

dt2
− dx

dt

1

h3

dh

dt
, (40)

ax =
d2x

dt2
=

1

h

dx

dt

dh

dt
=

1

h2

dx

dt

[
ff ′dz

dt
− v · a

c2

]
, (41)

28These experiments would be very difficult to perform in a small space, but in the classical view that
infinite precision of measurement is possible, they could be done. The one attempt [108, 109] to perform
such an experiment at the surface of the Earth yielded a null result.

29See, for example, sec. 97 of [110]. Other metrics are possible, some of which are reviewed in [111].
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where a = dv/dt = d2x/dt2 is the 3-acceleration, and similarly for ay. Only for |v| � c are
ax and ay close to zero.

For motion in z, we restrict our attention to the case that x = y = 0. Then, v = ẑ dz/dt,
and recalling the manipulations in eqs. (40)-(41), eq. (36) leads to,

d2z

dτ 2
=

1

h

d

dt

(
1

h

dz

dt

)
=

1

h2

d2z

dt2
− 1

h4

dz

dt

dh

dt
=

1

h2

d2z

dt2
− 1

h4

dz

dt

[
ff ′ dz

dt
− 1

c2

dz

dt

d2z

dt2

]
= −c2ff ′

h2
,(42)

1

h2

d2z

dt2

[
1 +

1

c2h2

(
dz

dt

)2
]

=
f2

h4

d2z

dt2
= −c2ff ′

h2

[
1 − 1

c2h2

(
dz

dt

)2
]

= −c2ff ′

h4

[
f2 − 2

c2

(
dz

dt

)2
]

,(43)

az =
d2z

dt2
= −c2f ′

[
f − 2

c2f

(
dz

dt

)2
]

.(44)

In general, the “vertical” acceleration az depends on the velocity vz = dz/dt.

A.1 A Common Choice for f

A common choice for the function f of eq. (33) is that considered in sec. 97 of [110],30

f = 1 +
gz

c2
, (45)

which is only physically meaningful in the region z > −c2/g. Then, the “vertical” accelera-
tion of a free, massive particle is,

az =
d2z

dt2
= −g

[(
1 +

gz

c2

)
− 2

c2(1 + gz/c2)

(
dz

dt

)2
]

. (46)

Here, the “vertical” acceleration az approaches −g only for |z| � c2/g and |v| � c. The
acceleration is upwards (“antigravity”) for |vz| > cf/

√
2 =

√
g00/2 = c(1 + gz/c2)/

√
2.31,32

However, the “antigravity” effect does not persist indefinitely, since eq. (46) indicates
that az < 0 for large z, such that any initial “upward” motion of a free particle eventually
becomes “downward”.

The nonlinear differential equation (46) (amazingly) has the analytic solution,

z =
c2

g

[(
1 +

gz0

c2

) 1

cosh g(t− t0)/c
− 1

]
, (47)

where z0 is the z-coordinate at time t0 when the velocity vz is zero. That is,

vz =
dz

dt
= −c

(
1 +

gz0

c2

) sinh g(t − t0)/c

cosh2 g(t − t0)/c
, (48)

30This is based on a uniformly accelerated frame in flat spacetime (special relativity), in which the
acceleration is constant with respect to the accelerated frame, as first discussed by Born (1909) [112].

31The result (44) was deduced in sec. 97 of [110], without comment as to the “antigravity”.
32For the unphysical region, z < −c2/g, the acceleration would be upwards for any velocity.
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whose maximum is,

vz,max =
c

2

(
1 +

gz0

c2

)
, (49)

when,

sinh
g(t − t0)

c
= −1, cosh

g(t − t0)

c
=

√
2, z =

c2

g

[
1√
2

(
1 +

gz0

c2

)
− 1

]
. (50)

Note also that the speed of a massless particle propagating in the z-direction is not c, the
speed of light in vacuum (according to inertial observers in flat spacetime), but for metrics
of the form (33), where for massless particles, ds2 = 0 = g00dt2 − dx2,

vmassless =
√

g00 = cf = c
(
1 +

gz

c2

)
, (51)

where the last form holds for f of eq. (45). Thus, the speed of light at the location of the
maximum (49) of the velocity of a massive particle is, using eq. (50),

vlight =
c√
2

(
1 +

gz0

c2

)
> vz,max. (52)

Although vz,max can be greater than c, it is always less than vlight.

A.2 An Alternative f

The choice (46) leads to az that depends on z even for zero velocity. It might be preferable
to have az = −g for zero velocity, independent of z, which requires c2ff ′ = g in eq. (44),
i.e.,33

f =

√
1 + 2gz

c2
, az = −g

[
1 − 2

c2(1 + 2gz/c2)

(
dz

dt

)2
]

. (53)

In this case, az is upwards (“antigravity”) for |vz| > c
√

1 + 2gz/c2/
√

2, which is upwards
for any velocity if z < −c2/2g.

In any case, a “uniform” gravitational field does not satisfy the equivalence principle
except for particles with |v| � c (unless one takes the view that the equivalence principle
is “local”, and observation of the velocity dependence of the acceleration can not be made
“locally”).

33In Einstein’s approximate theory of 1914, sec. 17 of [113]), he favored the f of eq. (47) when he took
g00 = c2(1 + 2Φ/c2), with Φ being the gravitational potential, gz for a uniform field.

12



B Appendix: Proper, Coordinate and Geometric

Acceleration

This appendix was written on July 15, 2017, following a suggestion from Ricardo Vieira.
When considering a test particle with nonzero mass, one often speaks of its proper 4-

velocity,

uα =
dxα

dτ
= c

dxα

ds
, (54)

for xα = (x0,x) = (x0, x1, x2, x3). In coordinate systems where x0 = ct with t as the
“time”, one speaks of the ordinary (or coordinate) 3-velocity, v = dx/dt. Introducing γ =
1/
√

1 − v2/c2, one can identity the proper-time interval as dτ = dt/γ, and the proper 4-
velocity can be written as,

uα = γ(c,v). (55)

While one might then suppose that the 4-vector duα/dτ would be called the proper 4-
acceleration, this seems not to be the convention in general relativity, where it is (sometimes)
called the coordinate 4-acceleration. Instead, the geodesic equation (10) is sometimes written
as,

Aα =
d2xα

dτ 2
+ Γα

μν

dxμ

dp

dxν

dτ
=

duα

dτ
+ Γα

μνu
μuν = 0, (56)

and the 4-vector Aλ = (0, 0, 0, 0) is called the proper 4-acceleration. In this view, the proper
4-acceleration is zero for a particle with no other interaction than “gravity”.

The geodesic equation,

duα

dτ
= −Γα

μνu
μuν , (57)

can then be interpreted as saying that the coordinate 4-acceleration duλ/dτ is equal and
opposite to the geometric 4-acceleration Γα

μνu
μuν associated with the curvature of spacetime.

We can also use eq. (55) to write,

duα

dτ
= γ

duα

dt
=

(
γ4

c
v · a, γ2a +

γ4

c2
(v · a)v

)
, where a =

dv

dt
. (58)

Comparing this with eq. (57), we see that,

γ4

c
v · a = −Γ0

μνu
μuν, γ2ak = Γ0

μνu
μuν vk

c
− Γk

μνu
μuν (k = 1, 2, 3). (59)

This provides an alternative approach to the accelerations ar and aφ as found in secs. 2.2.2-3
above.

13



C Appendix: Circular Orbits

This Appendix added April 16, 2020.
The main theme of this note has been that even at r � RM from a mass there are notable

effects of general relativity for fast moving objects. We now add a few remarks about circular
orbits with r ≈ RM .34

We can use eqs. (20) and (22) in eq. (16) for d2r/dp2 with θ = π/2, and multiply it by
2A[96] dr/dp to find, noting that C[96] = C2 for θ = π/2,

2A[96]

dr

dp

d2r

dp2
+

dA[96]

dp

(
dr

dp

)2

− J2

c2C4

dC2

dp
+

c4

D2
[96]

dD[96]

dp
= 0, (60)

A[96]

(
dr

dp

)2

+
J2

c2C2
− c4

D[96]

= −κ = const. (61)

C ′2

1 − RM/C

(
dr

dp

)2

+
J2

c2C2
− 1

1 − RM/C
= −κ, (62)

where κ is another constant of the motion.
The line element (4) can now be written (for θ = π/2) in terms of parameter p as,

ds2 = dp2

[(
1 − RM

C

) (
c dt

dp

)2

− C ′2

1 − RM/C

(
dr

dp

)2

− C2

(
dφ

dp

)2
]

= dp2

[
− C ′2

1 − RM/C

(
dr

dp

)2

− J2

c2C2
+

E2

c4(1 − RM/C)

]
= κ dp2. (63)

For a massless particle, the constant κ is zero, as first noted by Einstein in eq. (5) of [1],
while for a particle with nonzero rest mass, κ = 1 when parameter p is cτ and τ is the proper
time, as perhaps first noted by Einstein in eq. (20a) and following of [2].

It is useful to rewrite the last line of eq. (63) as,

E2

c4C ′2
=

(
dr

dp

)2

+
1

C ′2

(
1 − RM

C

)(
κ +

J2

c2C2

)
≡
(

dr

dp

)2

+ V (r), (64)

where,

V (r) =
1

C ′2

(
1 − RM

C

)(
κc2 +

J2

c2C2

)
, (65)

can be considered as an effective potential (per unit rest mass when κ = 1 and the test
particle has mass).

The interpretation of eq. (64) is most straightforward for the “standard” Schwarzschild
metric, with C = r. Then,

E2

c4
=

(
dr

dp

)2

+

(
1 − RM

r

)(
κ +

J2

c2r2

)
, V (r) =

(
1 − RM

r

)(
κ +

J2

c2r2

)
. (66)

34A succinct treatment of this theme via a Lagrangian method is given at
https://hepweb.ucsd.edu/ph110b/110b_notes/node79.html

14



Circular orbits exist for r0 such that dV (r0)/dr = 0, and these are stable if d2V (r0)/dr2 > 0,

dV (r)

dr
=

RM

r2

(
κ +

J2

c2r2

)
−
(

1 − RM

r

)
2J2

c2r3
=

κRM

r2
− 2J2

c2r3
+

3RMJ2

c2r4
, (67)

d2V (r)

dr2
= −2κRM

r3
+

6J2

c2r4
− 12RM J2

c2r5
. (68)

For κ = 0, r0 = 3RM/2 and d2V (r0)/dr2 = −2J2/c2r4
0 < 0, so photons have no stable

circular orbits, and have a possible unstable circular orbit at r0 = 3RM/2 (sometimes called
the photon sphere).

For κ = 1, circular orbits exist at the roots of,

r2
0 − 2

J2

c2RM
r0 +

3J2

c2
= 0, ⇒ r0 =

J2

c2RM

(
1 ±

√
1 − 3c2R2

M

J2

)
. (69)

Such orbits exist only J2/c2 ≥ 3R2
M . Orbits with minimal J have r0(Jmin) = 3RM , for which

d2V (r0)/dr2 = 0, which implies this radius is the borderline for stability. Since (Newtonian)
stable orbits exist for large r0, orbits with r0 < 3RM are unstable.

Orbits with very large angular momentum (per unit rest mass), J = γ rvφ = rvφ/
√

1 − v2
φ/c

2,

exist for r0 = r0,min = 3RM/2, but these are unstable.
In sum, unstable circular orbits for massive particles exist for 3RM/2 < r0 < 3RM in

standard Schwarzschild coordinates. The innermost stable circular orbit is at rISCO = 3RM ,
for which J =

√
3cRM = 3γ vRM , i.e., vISCO = c/2. The only circular orbit possible for a

photon is at r0 = 3RM/2, which is unstable.35 Since the minimum radius of an (unstable)
orbit of a massive particle is that same as that for a photon, we can say that in both cases
the orbital speed is the speed of light.36

C.1 Historical Note

The earliest discussion of circular orbits in general relativity was by Droste (1917) [10], who
was the first to use the now-standard Schwarzschild metric with C = r. On p. 204 he noted
that circular orbits exist only for r > 3RM/2, but he did not comment on their stability.

This result was also obtained in 1917 by Hilbert, p. 74 of [8], who also did not comment
on the stability of the orbit.

An extensive discussion of circular, elliptical and hyperbolic orbits was given in 1931 by
Hagihara [114] using Hamilton-Jacobi methods, including characterization of their stability,
for both massive particles and photons. He did not anticipate the possibility of black holes,
saying instead on p. 174: Hence the statement that a very massive star can entirely absorb
the light emitted from its surface and never be seen from outside, is quite fallacious.
Hagihara’s work went largely unnoticed for over 30 years.

35In Fock coordinates where the radial coordinate is R = r − RM/2, RISCO = 5RM/2, and the photon
sphere has radius R0 = RM .

36For a massive particle with velocity approaching the speed of light, the momentum and angular mo-
mentum diverge, such that J → ∞ as r0 → r0,min from above.
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In 1939, Einstein [115] discussed “stationary” orbits, using isotropic coordinates for
the Schwarzschild metric, and deduced that such circular orbits exist only for riso > (2 +√

3)RM/4.37 His concluding remarks have been interpreted as arguing that black holes could
not exist:38 The essential result of this investigation is a clear understanding as to why the
“Schwarzschild singularities” do not exist in physical reality. Although the theory given here
treats only clusters whose particles move along circular paths it does not seem to be subject
to reasonable doubt that more general cases will have analogous results. The “Schwarzschild
singularity” does not appear for the reason that matter cannot be concentrated arbitrarily.
And this is due to the fact that otherwise the constituting particles would reach the velocity
of light.

In 1956, McCrea [117] ended with the comments: It may not have been remarked before
that ... 3RM/2 is a critical distance for the Schwarzschild space-time. It is the distance for
which a circular orbit demands an orbital speed equal to the speed of light.

In 1958, Darwin [118] gave a discussion of the stability of circular orbits, while claiming to
be unaware of any previous such effort. He extended the discussion to elliptic and hyperbolic
orbits in [119].

In 1961, Goldhammer [120] published a brief note on the stability of circular orbits.
In 1963, Metzner [121] extended the analysis of Darwin somewhat.
The first textbook discussion of the stability of circular orbits in general relativity may

be that in sec. 25 of [122] (1973).

C.2 Gravitational Radiation in Binary Black-Hole Mergers

That the innermost stable circular orbit (ISCO) is at 3RM in standard Schwarzschild coor-
dinates is relevant to the recent observations of gravitational waves from mergers of black
holes initially in quasicircular orbits [123].39 The peak intensity of the radiation occurs at
this distance between centers of the black holes, after which they “plunge” towards one
another with lesser intensity of the radiation.40 The frequency f of the peak (quadrupole)
radiation is at twice the ISCO orbital frequency for, say, a pair of black holes of 30M�, for
which the orbital velocity is vISCO = c/2. Hence, f = 2vISCO/2πrISCO = c/6πRM (30M�) ≈
c/600RM (M�) ≈ 150 Hz, noting that the Schwarzschild radius of the Sun is RM (M�) ≈ 3

37As noted by Pauli in eq. (422) of [80], r in standard Schwarzschild coordinates is related by r =
riso(1 + RM/4riso)2, so Einstein’s result corresponds to r = 3RM/2 in standard coordinates, which is the
minimum radius for an unstable circular orbit, rather than for a stable one.

Since riso = [(r2 − RM r)1/2 + r − RM/2]/2 (p. 327 of [110]), the innermost stable circular orbit (ISCO)
(rISCO = 3RM) is at riso,ISCO = (5 + 4

√
2)RM/4 = 3.55RM in isotropic coordinates.

38The story of the slow theoretical acceptance of black holes is recounted in chaps. 3-6 of [116].
39The story of the slow acceptance of gravitational waves is recounted in [124], and more briefly in [125].
40Gravitational radiation emitted at radius r outside a black hole with Schwarzschild radius RM arrives

at an observer at distance robs � RM after time delay,

Δt =
1
c

∫ robs

r

dr

1 − Rm/r
=

robs − r

c
+

RM

c
ln

robs − RM

r − RM
, (70)

in standard Schwarzschild coordinates. While the last term diverges as r → RM , it is negligible for r = 3RM ,
so the peak intensity of gravitational radiation from black-hole mergers is little diluted or delayed by the
strong gravitational field of the black holes.
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[78] L. Flamm, Beiträge zur Einsteinschen Gravitationstheorie Phys. Z. 19, 197 (1917),
http://kirkmcd.princeton.edu/examples/GR/flamm_pz_17_448_16.pdf

Contributions to Einsteins theory of gravitation,
http://kirkmcd.princeton.edu/examples/GR/flamm_pz_17_448_16_english.pdf

[79] H. Weyl, Zur Gravitationstheorie, Ann. d. Phys. 54, 117 (1917),
http://kirkmcd.princeton.edu/examples/GR/weyl_ap_54_117_17.pdf

On the theory of gravitation, http://kirkmcd.princeton.edu/examples/GR/weyl_ap_54_117_17_english.pdf

[80] W. Pauli, Relativitätstheorie, Ency. Math. Phys. 5(2), 539 (1921),
http://kirkmcd.princeton.edu/examples/GR/pauli_emp_5_2_539_21.pdf

Theory of Relativity (Pergamon, 1958).

[81] K. Lanzcos, Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitations-
gleichungen, Phys. Z. 23, 537 (1923),
http://kirkmcd.princeton.edu/examples/GR/lanczos_pz_23_537_23.pdf

[82] V. Fock, The Theory of Space Time and Gravitation (Pergamon, 1959),
http://kirkmcd.princeton.edu/examples/GR/fock_spacteime_59.pdf

[83] M. Brillouin, Les Points Singuliers de l’Univers d’Einstein, J. Phys. Rad. 4, 43 (1923),
http://kirkmcd.princeton.edu/examples/GR/brillouin_jpr_4_43_23.pdf

The singular points of Einstein’s universe,
http://kirkmcd.princeton.edu/examples/GR/brillouin_jpr_4_43_23_english.pdf
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