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It seems that the concept of group velocity was first enunciated by Hamilton in 1841 in
published abstracts of works that never appeared.1 Hamilton considered a wave cos(kx−ωt)
defined only for negative x at t = 0 and incident on a dispersive medium that occupies the
region x > 0. He concluded “that the velocity with which such vibration spreads into those
portions of the vibratory medium which were previously undisturbed is in general different
for the velocity of passage of a given phase from one particle to another within that portion
of the medium which is already fully agitated; since we have velocity of transmission of phase
= ω/k but velocity of propagation of vibrating motion = dω/dk.” However, these results
were largely ignored.

The group-velocity concept became widely known after being (re)introduced by Stokes
in 1876 in a hydrodynamic context,2 and the greater generality of the concept emphasized
by Rayleigh in 1877 in sec. 191 of his book The Theory of Sound.3 The early history of the
group-velocity concept is well summarized in the book The Propagation of Disturbances in
Dispersive Media by T.H. Havelock (Cambridge U. Press, 1914).4

I give two answers to the question of how one knows that wave energy propagates with
the group velocity, both of which are “standard.”5 The discussion will be restricted to wave
motion along the x axis for brevity.

1. The total energy E associated with a wave of amplitude f(x, t) at a time t can in general
be written as,

E(t) =

∫
(Af2 + Bḟ2) dx, (1)

where ḟ = ∂f/∂t and either of A or B might be zero depending on the physical system.
Typically, the term Af2 is associated with energy stored in the wave medium due to the
strain of the wave while Bḟ2 is the kinetic energy of the medium due to the wave motion. For

1http://kirkmcd.princeton.edu/examples/optics/hamilton_pria_1_267_41.pdf

http://kirkmcd.princeton.edu/examples/optics/hamilton_pria_1_341_41.pdf

Hamiltion’s longest discussion of group velocity was in a letter to Herschel (1839), p. 599 of
http://kirkmcd.princeton.edu/examples/mechanics/hamilton_papers_v2_583.pdf

Here he considered a wave with dispersion relation of the form ω = a sin k for which the rapidity with
which a given phase travels is vp = ω/k, while the velocity of propagation of vibration was found to be
a cos k = dω/dk = vgroup.

2Problem 11 of the Smith’s Prize examination papers (Feb. 2, 1876), in Mathematical and Physical
Papers, Vol. 5 (Johnson Reprint Co., New York, 1966), p. 362,
http://kirkmcd.princeton.edu/examples/fluids/stokes_mathematical_and_physical_papers_v5.pdf

3
http://kirkmcd.princeton.edu/examples/mechanics/rayleigh_theory_of_sound_1.pdf

See also, http://kirkmcd.princeton.edu/examples/optics/rayleigh_nature_25_52_81.pdf
4http://kirkmcd.princeton.edu/examples/mechanics/havelock_waves_14.pdf
5A third generic argument has been given by G.B. Whitham, Comm. Pure Appl. Math. 14, 675 (1961),

http://kirkmcd.princeton.edu/examples/fluids/whitham_cpam_14_675_61.pdf

See also sec. 2.1 of http://kirkmcd.princeton.edu/examples/biaxial.pdf
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example, B = 0 for an electromagnetic wave while A = 0 for the granular systems recently
studied by Swinney et al., Nature 382, 793 (1996).6

A question arises when one wishes to interpret the quantity Af2 + Bḟ2 as an energy
density. As the wave changes with time it is possible that the energy moves in space. If
the wave amplitude has the form of a traveling wave, f(x − vt), then both f2 and ḟ2 are
functions of a single variable, x − vt, and the energy can be said to be propagating with
velocity v.

The concept of group velocity arises when a waveform is Fourier analyzed into a set of
harmonic waves,

f(x, t) =

∫
F (k)ei(kx−ωt) dk, (2)

characterized by wave number k and frequency ω(k) where the latter relation can be non-
trivial due to dispersion in the wave medium. The harmonic wave of frequency ω has phase
velocity vp = ω/k which is not necessarily equal to the velocity v of the localized waveform.
(In this discussion only the real part of f has physical significance.)

The spectral function F (k) can be determined by the Fourier-inverse relation for the wave
at a fixed time, say t = 0,

F (k) =
1

2π

∫
f(x, 0)e−ikx dx. (3)

However, we don’t need to use this result in the present case.
The usual argument asks us to restrict our attention to waveforms whose spectral function

F (k) is narrow enough that the dispersion relation can be approximated as,

ω = ω(k0) +
dω(k0)

dk
(k − k0), (4)

i.e., the leading terms in a Taylor expansion about some central wave number k0. (The
sign of k0 determines whether the pulse moves in the +x or −x direction.) Certainly this
approximation breaks down for very short pulses in highly dispersive media.

In the approximation (4) we have,

f(x, t) = ei[k0(dω(k0)/dk)−ω0]t

∫
F (k)eik[x−(dω(k0)/dk)t] dk

= ei[k0(dω(k0)/dk)−ω0]tf(x − (dω(k0)/dk)t, 0). (5)

That is, to within a phase factor of unit modulus the waveform f(x, t) is a function of a
single variable, x − (dω(k0)/dk)t, and so can be said to propagate with the group velocity,

vgroup =
dω(k0)

dk
. (6)

As argued above, the wave energy propagates with this velocity as well.
If the waveform is highly localized in space it will have a broad spectral content and

the linear approximation to the dispersion relation may not suffice. If so, the waveform will
change shape (disperse) as it propagates and the group velocity is not well defined.

6http://kirkmcd.princeton.edu/examples/fluids/umbanhowar_nature_382_793_96.pdf
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This well-known argument appears to be due to Lord Kelvin, Proc. Roy. Soc. London
42, 80 (1887),7 and is reproduced in much the above form in sec. 3 of the book by Havelock.

2. In 1877 both Reynolds and Rayleigh published articles relating energy flow to group
velocity. Reynolds’ discussion8 is based on water waves and can be found in sec. 273 of the
book Hydrodynamics by H. Lamb, as well as in sec. 26 of Mechanics of Deformable Bodies
by A. Sommerfeld (1946).

Rayleigh’s argument9 has been reprinted in the Appendix to Vol. 1 of his book The Theory
of Sound and is based on the general observation that dispersion in a physical system is always
accompanied by absorption. While the latter can often be ignored as a first approximation
it should not be left out of discussions of energy flow.

Here, I repeat Rayleigh’s argument, which seems to be less well-known than Kelvin’s.
For a steady wave, energy is being transported into the medium at the same rate at

which it is being absorbed, when averages are taken over a whole cycle of the wave. The
power P absorbed by a mass m in the medium is P = Fv, where v is the velocity of
the mass and F = γmv is the dissipative force. Thus, P = γmv2, and summing over all
masses in some region, P = 2γT , where T is the kinetic energy. Taking the time average,
〈P 〉 = 2γ 〈T 〉 = γE, where E is the total energy. In writing E = 2 〈T 〉 we suppose that the
wave motion is a small departure from equilibrium so the restoring forces can be described
by a quadratic potential, for which E = 2 〈T 〉 according to the virial theorem of classical
mechanics.

Consider a pure harmonic wave, f = f0e
i(kx−ωt), incident on a dispersive medium that

occupies the half space x > 0. Because of absorption in the medium this wave dies out over
some characteristic distance d. That is, the amplitude of the wave can be written f0e

−x/d in

the medium. Then the time average energy density is
〈
Af2 + Bḟ2

〉
≡ Cf2

0e−2x/d.

The time-averaged power absorbed for x > x0 in the medium is then,

〈P (x0)〉 = γ

∫ ∞

x0

〈
Af2 + Bḟ2

〉
dx = Cγf2

0

∫ ∞

x0

e−2x/d dx =
Cγdf2

0

2
e−2x0/d. (7)

The (time-averaged) rate of energy flow per unit area across the plane x = x0 is the
(time-averaged) energy density there times the desired velocity of energy flow, vE. The rate
of energy flow is thus CvEf2

0 e−2x0/d. Comparing with eq. (7), we see that the energy flow
velocity is given by,

vE =
γd

2
. (8)

To find distance d, we suppose that in the absence of absorption the harmonic solutions
obey a known dispersion relation, k = k(ω). Then the equation of motion including absorp-
tion, taken to be velocity dependent, differs from that without absorption only by replacing
the second time derivative ∂2/∂t2 with the form,

∂2

∂t2
+ γ

∂

∂t
, (9)

7http://kirkmcd.princeton.edu/examples/fluids/thomson_prsl_42_80_87.pdf
8http://kirkmcd.princeton.edu/examples/fluids/reynolds_nature_16_343_77.pdf
9http://kirkmcd.princeton.edu/examples/fluids/rayleigh_plms_9_21_77.pdf

3



where γ, whose dimensions are 1/time, characterizes the absorption process. The new dis-
persion relation that results on inserting our trial harmonic solution into the wave equa-
tion differs only in the term ω2 being replaced by ω2 + iγω. For weak absorption this
is equivalent to replacing ω by ω + iγ/2. The corresponding wave number is therefore
k(ω + iγ/2) ≈ k(ω) + i(γ/2)(dk/dω), again ignoring terms of order γ2. The wave solution
in the presence of absorption is therefore approximately,

f(x > 0, t) = f0 e−(γ/2)(dk/dω)xei(kx−ωt). (10)

Thus, the characteristic attenuation length is ,

d =
2

γ

dω

dk
. (11)

From eq. (8) the velocity of energy flow is,

vE =
dω

dk
= vgroup. (12)

An objection to this argument would be that it doesn’t apply if the absorption is too
strong. It may be that the heroic efforts of Sommerfeld and Brillouin (1914)10 to clarify
signal propagation in the case of highly absorptive anomalous dispersion in optical media
(where vgroup exceeds the speed of light) have left the impression that the more ordinary case
is similarly intricate.

10L. Brillouin, Wave Propagation and Group Velocity (Academic Press, 1960),
http://kirkmcd.princeton.edu/examples/EM/brillouin_waves_60.pdf
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