
Hamiltonian with z as the Independent Variable
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(March 19, 2011; updated June 19, 2015)

1 Problem

Deduce the form of the Hamiltonian when z rather than t is considered to be the independent
variable. Illustrate this for the case of a particle of charge q and mass m in an external
electromagnetic field.

2 Solution

This solution follows Appendix B of [1]. See also sec. 1.6 of [2].1 For simplicity we consider
only a single particle.

2.1 Use of t as the Independent Variable

We recall the usual Hamiltonian description of a particle of charge q and mass m in external
electromagnetic fields E and B, which can be deduced from scalar and vector potentials V
and A (in some gauge) according to,

E = −∇V − 1

c

∂A

∂t
, B = ∇ ×A, (1)

Ht(x, y, z, px, py, pz) = Emech + qV = c
√

m2c2 + p2
mech,x + p2

mech,y + p2
mech,z + qV (2)

= c
√

m2c2 + (px − qAx/c)2 + (py − qAy/c)2 + (pz − qAz/c)2 + qV,

in Gaussian units, where c is the speed of light in vacuum, and the components of p = pmech+
qA/c are the canonical momenta associated with coordinates x = (x, y, z). The subscript
on Ht indicates that time t is the independent variable in this Hamiltonian. Hamilton’s
equations of motion for this case are,

dxi

dt
=

∂Ht

∂pi

=
c2pmech,i

Emech

= vi, (3)

dpi

dt
= −∂Ht

∂xi
= q

∑
j

vj

c

∂Aj

∂xi
− q

∂V

∂xi

=
dpmech,i

dt
+

q

c

dAi

dt
=

dpmech,i

dt
+

q

c

∂Ai

∂t
+ q

∑
j

vj

c

∂Ai

∂xj
, (4)

1This topic is also discussed in Art. 431, p. 353 of [3], which refers to earlier French papers.
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using the convective derivative dA/dt = ∂A/∂t + (v · ∇)A for the vector potential at the
position of the moving particle. Hence,

dpmech,i

dt
= q

[
−∂V

∂xi
− 1

c

∂Ai

∂t
+

∑
j

vj

c

(
∂Aj

∂xi
− ∂Ai

∂xj

)]
= q

(
E +

v

c
×B

)
i
= FLorentz,i , (5)

such that the equation of motion for the mechanical momentum pmech is gauge invariant,
although the Hamiltonian (2) is not.

2.2 Use of z as the Independent Variable

In some applications, such as transport of particles in accelerators and storage rings, it is
often preferable to consider a set of particles at fixed values of a spatial coordinate, say z,
rather than at fixed time.2 So, we seek a Hamiltonian formalism in which z is the independent
variable, and t is the third q-coordinate, along with x and y. We must identify a canonical
momentum pt that is conjugate to coordinate t, and a Hamiltonian Hz(x, y, t, px, py, pt) such
that the equations of motion can be deduced from this Hamiltonian in the usual way.

We anticipate that the (total) energy is conjugate to the time coordinate, so we tentatively
identify,

pt
?
=Etotal = Emech + qV = Ht. (6)

We might then guess that, by analogy, the desired Hamiltonian Hz equals the canonical
momentum pz,

Hz
?
= pz = pmech,z +

qAz

c
=

√
E2

mech

c2
− m2c2 − p2

mech,x − p2
mech,y +

qAz

c

=

√
(pt − qV )2

c2
− m2c2 −

(
px − qAx

c

)2

−
(

px − qAx

c

)2

+
qAz

c
. (7)

The test is whether the equations of motion that follow from these identifications are con-
sistent with those associated with Ht,

dx

dz

?
=

∂Hz

∂px

= − pmech,x

pmech, z
= −vx

vz

. (8)

The magnitude is correct, but the sign is wrong. This suggests that there should have been
a minus sign in both eqs. (6) and (7),

pt = −Etotal = −Emech − qV = −Ht, (9)

2It is often desirable that the new independent variable be the path length s along a curved, central
trajectory in, say, a ring. However, only in the linear approximation can the formalism of this section be
applied to a curvilinear coordinate s.
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Hz = −pz = −pmech,z − qAz

c
= −

√
E2

mech

c2
− m2c2 − p2

mech,x − p2
mech,y −

qAz

c

= −
√

(pt + qV )2

c2
− m2c2 −

(
px − qAx

c

)2

−
(

px − qAx

c

)2

− qAz

c
. (10)

Now, as desired,

dt

dz
=

∂Hz

∂pt

= − −Emech

c2pmech, z
=

1

vz

. (11)

Also,

dpx

dz
= −∂Hz

∂x
= − q

vz

∂V

∂x
+

q

vz

∑
j

vj

c

∂Ai

∂xj

=
dpmech,x

dz
+

q

cvz

dAx

dt
=

dpmech,x

dz
+

q

cvz

∂Ax

∂t
+

q

vz

∑
j

vj

c

∂Ax

∂xj
, (12)

and hence,

dpmech,x

dz
=

q

vz

[
−∂V

∂x
− 1

c

∂Ax

∂t
+ q

∑
j

vj

c

(
∂Aj

∂x
− ∂Ax

∂xj

)]
=

q

vz

(
E +

v

c
× B

)
x

=
FLorentz,x

vz

. (13)

Finally,

dpt

dz
= −∂Hz

∂t
= − q

vz

∂V

∂t
+

q

vz

v

c
· ∂A

∂t

= −dEmech

dz
− q

vz

dV

dt
= −dEmech

dz
− q

vz

∂V

∂t
− q

vz

v · ∇V, (14)

and hence,

dEmech

dz
=

q

vz
v ·

(
−∇V − 1

c

∂A

∂t

)
=

q

vz
v ·E =

FLorentz · v
vz

. (15)

Thus, Hamilton’s equations for Hz, eq. (10), are consistent with the usual equations of
motion deduced from Ht, and it is valid to use either Hamiltonian as most convenient.

In practice, the importance of the Hamiltonian Hz is in assuring that Liouville’s theorem
holds for canonical coordinates (x, y, t, px, py, pt). When considering the phase space of these
coordinates, it is common to write pt = Emech + qV (and Hz = pz), which is not strictly
correct, but causes no error unless one tries to deduce the equations of motion from this Hz.

3 Liouville’s Theorem

Liouville’s theorem [4, 5, 6] is that the (phase) volume Πi dqidpi in canonical-coordinate
space (qi, pi) is invariant under canonical transformations, if those transformations do not
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involve scale changes of the coordinates. A canonical transformation operates on one set of
canonical coordinates (qi, pi), for which there exists a Hamiltonian h(qi, pi; t) and for which
the equations of motion are,

dqi

dt
=

∂h

∂pi
,

dpi

dt
= − ∂h

∂qi
, (16)

to arrive at another set of canonical coordinates (Qi, Pi) with Hamiltonian H(Qi, Pi; t) for
which the equations of motion are,

dQi

dt
=

∂H

∂Pi

,
dPi

dt
= − ∂H

∂Qi

. (17)

Liouville’s theorem is often applied to a system of N particles, for which canonical-
coordinate space has 6N dimensions. If interactions between these particles can be ignored,
we can consider the N particles as being within some volume in the 6-dimensional phase
space (qi, pi), i = 1, 2, 3, and Liouville’s theorem for the latter phase space implies that the 6-
dimensional phase volume of the set of particles is invariant under canonical transformations
of the six coordinates (qi, pi).

Liouville’s theorem has the corollaries that the 2-dimensions subvolumes dqi dpi and the
4-dimensional subvolumes dqi dpi dqj dpj have the invariants under scale-preserving canonical
transformations, ∑

i

dqi dpi , and dqi dpi + dqj dpj dqk dpk, (18)

for indices i, j and k all different.
Evolution in time, (qi(t0), pi(t0)) → (qi(t), pi(t)), is an example of a canonical transforma-

tion, and Liouville’s theorem is often stated in the more restricted sense that phase volume
is invariant under this subset of canonical transformations.

An electromagnetic gauge transformation, A → A+∇f , V → V −∂f/∂ct, where f is any
differentiable scalar function, is also a canonical transformation. Hence, phase volume, along
with Hamilton’s equations of motion, are invariant under gauge transformations (although
the Hamiltonian itself is not).3

The transformation (x, y, z, px, py, pz) → (x, y, t, px, py, pt) considered in sec. 2 is also a
canonical transformation in a broader sense of this term.4 This transformation changes the
2-dimensional phase volume dz dpz to,

|J | dt dpt =

∣∣∣∣∣∣
∂z
∂t

∂z
∂pt

∂pz

∂t
∂pz

∂pt

∣∣∣∣∣∣ dt dpt =

∣∣∣∣∣∣
vz 0

0 1
vz

∣∣∣∣∣∣ dt dpt = dt dpt (19)

which confirms that Liouville’s theorem holds for this canonical transformation.
3In practice, one considers a system in a particular gauge. Particularly convenient for Hamiltonian

dynamics is the so-called Hamiltonian gauge (introduced by Gibbs in 1896 [7]; see, for example, sec. 8 of
[8]) in which the scalar potential V is everywhere zero. For oscillatory electromagnetic fields with time
dependence e−iωt and wave number k = ω/c, the Hamiltonian-gauge vector potential is A = −iE/k; for
static electric fields A = −c(t − t0)E; and for static magnetic fields the vector potential is the same as that
in the Coulomb gauge (and also in the Lorenz gauge).

4Canonical transformations that do not change the independent variable are sometimes called restricted
canonical transformations.

4



4 Swann’s Theorem

In one of the first applications of Liouville’s theorem to a “beam” of particles, Swann [9]
showed that the phase volume in coordinates (x, y, z, px, py, pz), where the canonical momenta
are those for a particle in an electromagnetic field, p = pmech + qA/c, is the same as that
for coordinates (x, y, z, pmech,x, pmech,y, pmech,z). The proof is straightforward, in that the
determinant of the Jacobian matrix of the (noncanonical) transformation,
(x, y, z, pmech,x, pmech,y, pmech,z) → (x, y, z, px, py, pz), is unity,

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

q
c

∂Ax

∂x
q
c

∂Ax

∂y
q
c

∂Ax

∂z
1 0 0

q
c

∂Ay

∂x
q
c

∂Ay

∂y
q
c

∂Ay

∂z
0 1 0

q
c

∂Az

∂x
q
c

∂Az

∂y
q
c

∂Az

∂z
0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1. (20)

This argument clearly holds if only one or two of the canonical momenta are replaced by
mechanical momenta. Likewise, the argument holds for any 2-dimensional or 4-dimensional
subvolume in phase space. Furthermore, when using z as the independent variable, with t as
a coordinate with canonical momentum pt = −Emech − qV , Swann’s argument holds when
pt is replaced by −Emech (or Emech).

Appendix: Extended Phase Space

A particle with definite mass has three degrees of freedom, so it is natural to consider its
phase space as having six dimensions. Yet, in the relativistic view of four-dimensional space-
time, one is led to consider the eight-dimensional extended phase space (x, px, y, py, z, pz, t, pt)
where pt = −E, as apparently first done by Sundman in 1912 [10]. “Textbook discussions
are given in sec. 6.10 of [11] and sec. 5.5 of [12]. One use of extended phase space is in
deducing Hamiltonians for systems with time-dependent forces, as discussed in [13].
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