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1 Problem

Estimate the period τ of a “simple” harmonic oscillator consisting of a zero-rest-length
massless spring of constant k that is connected to a rest mass m0 (with the other end of the
spring fixed to the origin), taking in account the relativistic mass.

2 Solution

2.1 Quick Estimates

Ignoring relativistic effects, the angular frequency ω0 and the period τ 0 of the oscillator are,

ω0 =

√
k

m0
, τ 0 =

2π

ω0
= 2π

√
m0

k
. (1)

In this approximation, the oscillating mass has position and velocity,

x = A cosω0t, v = −Aω0 sin ω0t. (2)

In general, the oscillating mass has (time-dependent) relativistic mass,

m =
m0√

1 − v2/c2
≈ m0

(
1 +

v2

2c2

)
, (3)

where c is the speed of light in vacuum. We expect that the period τ of oscillation of the
relativistic mass can be approximated as,

τ ≈ 2π

ω
= 2π

√
〈m〉
k

> τ 0 , (4)

where 〈m〉 > m0 is an appropriate average of the relativistic mass. This might be the time
average,

〈m〉t =
1

τ

∫ τ

0

m(t) dt ≈ m0

τ

∫ τ

0

(
1 +

v2

2c2

)
dt ≈ m0

(
1 +

1

2τ 0c2

∫ τ0

0

A2ω2
0 cos2 ω0t dt

)

= m0

(
1 +

A2ω2
0

4c2

)
= m0

(
1 +

kA2

4m0c2

)
, (5)

in which case,

τ ≈ τ 0

√
1 +

kA2

4m0c2
≈ τ 0

(
1 +

kA2

8m0c2

)
, 〈m〉 = 〈m〉t . (6)
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However, it could be that the spatial average is more appropriate,

〈m〉x =
1

A

∫ A

0

m(x) dx ≈ m0

A

∫ A

0

(
1 +

v2

2c2

)
dx ≈ m0

[
1 +

1

2Ac2

∫ A

0

A2ω2
0

(
1 − x2

A2

)
dx

]

= m0

(
1 +

A2ω2
0

4c2

)
= m0

(
1 +

kA2

3m0c2

)
, (7)

noting that sinωt =
√

1 − cos2 ωt ≈ √
1 − x2/A2, in the approximation that oscillating mass

has x-coordinate x = A cosωt. In this case,

τ ≈ τ0

√
1 +

kA2

3m0c2
≈ τ 0

(
1 +

kA2

6m0c2

)
, 〈m〉 = 〈m〉x . (8)

As many other averages of the relativistic mass can be imagined, we seek a method that
clarifies what type of approximation is best.

2.2 A Better Estimate

A different approach is to note that the motion is periodic with spatial amplitude A, and so
the period τ can be computed as,

τ = 4

∫ A

0

dt

dx
dx = 4

∫ A

0

dx

v
. (9)

Total energy E is conserved in this example,

E = mc2 +
kx2

2
=

m0c
2√

1 − v2/c2
+

kx2

2
= m0c

2 +
kA2

2
, (10)

where the potential energy of the system is kx2/2, such that,1

1

v
=

τ 0

2π

1 + k(A2 − x2)/2m0c
2

√
A2 − x2

√
1 + k(A2 − x2)/4m0c2

≈ τ 0

2π

(
1√

A2 − x2
+

3k
√

A2 − x2

8m0c2

)
. (11)

Hence,

τ ≈ 2τ 0

π

(∫ A

0

dx√
A2 − x2

+
3k

8m0c2

∫ A

0

√
A2 − x2 dx

)
= τ 0

(
1 +

3kA2

16m0c2

)
. (12)

The correction term in this result is 2% larger than that in the estimate (8) based on the
spatial average of the relativistic mass.

The “exact” periord of a relativistic harmonic oscillator can be given as an elliptic integral.
A series approximation to this integral is given in [2].

1There is a sign error in the correction term of eq. (7-150), p. 325 of [1], which corresponds to eq. (11)
of the present note. Thanks to Bill Jones for pointing this out.
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