Heat Flow from a Point Source at the End of a Bar

Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (November 18, 2014; updated November 22, 2014)

1 Problem

As a simple example of 3-dimesional heat flow, deduce the steady-state temperature distribution inside a semi-infinite square bar with a point source of heat somewhere on its square face, assuming no heat flow across other surfaces (except the square face at infinity).¹

2 Solution

The heat flux vector \mathbf{J} obeys,

$$\mathbf{J} = -\kappa \boldsymbol{\nabla} T,\tag{1}$$

where κ is the thermal conductivity and T is the temperature distribution. Energy is conserved in the interior of the bar, so in a steady state $\nabla \cdot \mathbf{J} = 0$ there, and hence $\nabla^2 T = 0$.

We consider a separation-of-variable solution in a rectangular coordinate system, taking the heat source Q to be at $(x_0, y_0, 0)$, with the bar extending over the $z \ge 0$ with square cross section $|x|, |y| \le a/2$. The normal derivative of the temperature is zero at the surfaces across which no heat flows, so the boundary conditions are,²

$$\frac{\partial T(x,y,0)}{\partial z} = -\frac{Q}{\kappa}\delta(x-x_0,y-y_0),\tag{2}$$

$$\frac{\partial T(0, y, z)}{\partial x} = \frac{\partial T(a, y, z)}{\partial x} = 0 = \frac{\partial T(x, 0, z)}{\partial y} = \frac{\partial T(x, a, z)}{\partial y}.$$
(3)

A separated form that obeys $\nabla^2 T = 0$ and satisfies condition (3) is,³

$$T = \sum_{m,n=0}^{\infty} C_{mn} \cos \frac{2m\pi x}{a} \cos \frac{2n\pi y}{a} e^{-2\sqrt{m^2 + n^2}\pi z/a} - Az.$$
 (4)

Condition (2) is then,

$$A + \frac{2\pi}{a} \sum_{m,n=0}^{\infty} \sqrt{m^2 + n^2} C_{mn} \cos \frac{2m\pi x}{a} \cos \frac{2n\pi y}{a} = \frac{Q}{\kappa} \delta(x - x_0, y - y_0).$$
(5)

¹Equivalently, consider a square bar of infinite length with a point source somewhere inside.

²It seems not possible to obtain an analytic solution for a bar of finite length with a point source on one end and the other end at fixed temperature, if no heat flows across its other surfaces.

³This type of solution may have been first given by Fourier, sec. 321 of [1].

On multiplying by $\cos \frac{2k\pi x}{a} \cos \frac{2l\pi y}{a}$ and integrating over the area of the square cross section of the bar, we find that,

$$A = \frac{Q}{a^{2}\kappa}, \qquad C_{kl} = \frac{2Q}{\pi a\kappa} \begin{cases} \text{undefined} & (k = l = 0), \\ \frac{1}{l}\cos\frac{l\pi y_{0}}{a} & (k = 0, \ l \ge 1), \\ \frac{1}{k}\cos\frac{k\pi x_{0}}{a} & (l = 0, k \ge 1), \\ \frac{2}{\sqrt{k^{2}+l^{2}}}\cos\frac{k\pi x_{0}}{a}\cos\frac{l\pi y_{0}}{a} & (k, l \ge 1). \end{cases}$$
(6)

Hence, on redefinint the undetermined constant C_{00} as T_0 ,

$$T = T_0 - \frac{Qz}{a^2\kappa} + \frac{2Q}{\pi a\kappa} \left(\sum_{m=1}^{\infty} \cos\frac{2m\pi x}{a} \cos\frac{2m\pi x_0}{a} \frac{e^{-2m\pi z/a}}{m} + \sum_{n=1}^{\infty} \cos\frac{2n\pi y}{a} \cos\frac{2n\pi y_0}{a} \frac{e^{-2n\pi z/a}}{n} + 2\sum_{m,n=1}^{\infty} \cos\frac{2m\pi x}{a} \cos\frac{2m\pi x_0}{a} \cos\frac{2n\pi y}{a} \cos\frac{2n\pi y}{a} \cos\frac{2n\pi y_0}{a} \frac{e^{-2\sqrt{m^2 + n^2}\pi z/a}}{\sqrt{m^2 + n^2}} \right).$$
(7)

and the heat-flow vector (1) has components,

$$J_{x} = \frac{2Q}{a^{2}} \left(\sum_{m=1}^{\infty} \sin \frac{2m\pi x}{a} \cos \frac{2m\pi x_{0}}{a} e^{-2m\pi z/a} + 2 \sum_{m,n=1}^{\infty} m \sin \frac{2m\pi x}{a} \cos \frac{2m\pi x_{0}}{a} \cos \frac{2n\pi y}{a} \cos \frac{2n\pi y_{0}}{a} \frac{e^{-2\sqrt{m^{2}+n^{2}}\pi z/a}}{\sqrt{m^{2}+n^{2}}} \right), \quad (8)$$

$$J_{y} = \frac{2Q}{a^{2}} \left(\sum_{n=1}^{\infty} \sin \frac{2n\pi y}{a} \cos \frac{2n\pi y_{0}}{a} e^{-2n\pi z/a} + 2 \sum_{m,n=1}^{\infty} n \cos \frac{2m\pi x}{a} \cos \frac{2m\pi x_{0}}{a} \sin \frac{2n\pi y}{a} \cos \frac{2n\pi y_{0}}{a} \frac{e^{-2\sqrt{m^{2}+n^{2}}\pi z/a}}{\sqrt{m^{2}+n^{2}}} \right), \quad (9)$$

$$J_{z} = \frac{Q}{a^{2}} \left(1 + 2\sum_{m=1}^{\infty} \cos \frac{2m\pi x}{a} \cos \frac{2m\pi x_{0}}{a} e^{-2m\pi z/a} + 2\sum_{n=1}^{\infty} \cos \frac{2n\pi y}{a} \cos \frac{2n\pi y_{0}}{a} e^{-2n\pi z/a} + 4\sum_{m,n=1}^{\infty} \cos \frac{2m\pi x}{a} \cos \frac{2m\pi x_{0}}{a} \cos \frac{2n\pi y}{a} \cos \frac{2n\pi y_{0}}{a} e^{-2\sqrt{m^{2}+n^{2}}\pi z/a} \right).$$
(10)

For the particular case that the point source is at the center of the end face, $x_0 = y_0 = 0$,

$$T = T_0 - \frac{Qz}{a^2\kappa} + \frac{Q}{\pi a\kappa} \left(\sum_{m=1}^{\infty} \cos \frac{2m\pi x}{a} \frac{e^{-2m\pi z/a}}{m} + \sum_{n=1}^{\infty} \cos \frac{2n\pi y}{a} \frac{e^{-2n\pi z/a}}{n} + 2\sum_{m,n=1}^{\infty} \cos \frac{2m\pi x}{a} \cos \frac{2n\pi y}{a} \frac{e^{-2\sqrt{m^2 + n^2}\pi z/a}}{\sqrt{m^2 + n^2}} \right).$$
 (11)

and the heat-flow vector (1) has components,

$$J_x = \frac{2Q}{a^2} \left(\sum_{m=1}^{\infty} \sin \frac{2m\pi x}{a} e^{-2m\pi z/a} + 2\sum_{m,n=1}^{\infty} m \sin \frac{2m\pi x}{a} \cos \frac{2n\pi y}{a} \frac{e^{-2\sqrt{m^2 + n^2}\pi z/a}}{\sqrt{m^2 + n^2}} \right),$$
(12)

$$J_{y} = \frac{2Q}{a^{2}} \left(\sum_{n=1}^{\infty} \sin \frac{2n\pi y}{a} e^{-2n\pi z/a} + 2\sum_{m,n=1}^{\infty} n \cos \frac{2m\pi x}{a} \sin \frac{2n\pi y}{a} \frac{e^{-2\sqrt{m^{2}+n^{2}}\pi z/a}}{\sqrt{m^{2}+n^{2}}} \right),$$
 (13)

$$J_{z} = \frac{Q}{a^{2}} \left(1 + 2\sum_{m=1}^{\infty} \cos \frac{2m\pi x}{a} e^{-2m\pi z/a} + 2\sum_{n=1}^{\infty} \cos \frac{2n\pi y}{a} e^{-2n\pi z/a} + 4\sum_{m,n=1}^{\infty} \cos \frac{2m\pi x}{a} \cos \frac{2n\pi y}{a} e^{-2\sqrt{m^{2}+n^{2}\pi z/a}} \right).$$
(14)

The figures below⁴ shows the lines of the heat-flow vector **J** in the midplane y = 0,

$$J_x(x,0,z) = \frac{2Q}{a^2} \left(\sum_{m=1}^{\infty} \sin \frac{2m\pi x}{a} e^{-2m\pi z/a} + 2 \sum_{m,n=1}^{\infty} m \sin \frac{2m\pi x}{a} \frac{e^{-2\sqrt{m^2 + n^2}\pi z/a}}{\sqrt{m^2 + n^2}} \right), (15)$$

$$J_y(x,0,z) = 0,$$
(16)

$$J_{z}(x,0,z) = \frac{Q}{a^{2}} \left(1 + 2\sum_{m=1}^{\infty} \cos \frac{2m\pi x}{a} e^{-2m\pi z/a} + 2\sum_{n=1}^{\infty} e^{-2n\pi z/a} + 4\sum_{m,n=1}^{\infty} \cos \frac{2m\pi x}{a} e^{-2\sqrt{m^{2}+n^{2}\pi z/a}} \right).$$
(17)

Indices m and n were evaluated up to 1 in the left figure and to 20 in the right; indices higher than 1 mainly affect the region close to z = 0 where the delta-function boundary condition (5) is being approximated.

⁴The figures were generated via the Mathematica notebook http://kirkmcd.princeton.edu/examples/heatflow.nb.

The figure indicates that the heat flow is essentially parallel to the z-axis for $z \gtrsim a/2$ from the point source, which is agreeable with naïve expectations.⁵

References

- J. Fourier, Theorie Analytique de la Chaleur (Firmin Didot, 1822), http://kirkmcd.princeton.edu/examples/statmech/fourier_22.pdf
 http://kirkmcd.princeton.edu/examples/statmech/fourier_22_english.pdf
- [2] H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1959), http://kirkmcd.princeton.edu/examples/statmech/carslaw_59.pdf

⁵This example does not appear in the great compendium [2] of lore on heat conduction, although the ingredients of the solution are, of course, well represented there. For example, sec. 14.3-III gives a 2-dimensional version of the present problem.