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1 Problem

A variant on the electro- or magnetostatic boundary value problem arises in accelerator
physics, where a specified field, say B(0, 0, z), is desired along the z axis. In general, there
exist static fields B(x, y, z) that reduce to the desired field on the axis, but the “boundary
condition” B(0, 0, z) is not sufficient to insure a unique solution.1

For example, find a field B(x, y, z) that reduces to,

B(0, 0, z) = B0 cos kz x̂ + B0 sin kz ŷ (1)

on the z axis. In this, the magnetic field rotates around the z axis as z advances.
Show how the use of rectangular or cylindrical coordinates leads “naturally” to different

forms for B.
One 3-dimensional field extension of (1) is the so-called helical wiggler [2, 3], which obeys

the auxiliary requirement that the field at z + δ be the same as the field at z, but rotated
by angle kδ. Show that this field pattern can be realized by a current-carrying wire that is
wound in a helix of period λ = 2π/k [4].

2 Solution

2.1 Solution in Rectangular Coordinates

We first seek a solution in rectangular coordinates, and expect that separation of variables
will apply. Thus, we consider the form,

Bx = f(x)g(y) cos kz, (2)

Bx = F (x)G(y) sinkz, (3)

Bz = A(x)B(y)C(z). (4)

Then,
∇ · B = 0 = f ′g cos kz + FG′ sin kz + ABC ′, (5)

where the ′ indicates differentiation of a function with respect to its argument. Equation (5)
can be integrated with respect to z to give,

ABC = −f ′g
k

sin kz +
FG′

k
cos kz. (6)

1If the axial field has only an axial component a unique solution obtains [1].
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The z component of ∇ × B = 0 tells us that,

∂Bx

∂y
= fg′ cos kz =

∂By

∂x
= F ′G sin kz. (7)

For this to hold at all x and y we must have g′ = 0 = F ′, which implies that g and F are
constant, say 1. Likewise,

∂Bx

∂z
= −fk sin kz =

∂Bz

∂x
= A′BC = −f ′′

k
sin kz, (8)

using eqs. (6)-(7). Thus, f
′′ − k2f = 0, so,

f = f1e
kx + f2e

−kx. (9)

Finally,
∂By

∂z
= Gk cos kz =

∂Bz

∂y
= AB ′C =

G′′

k
sin kz, (10)

so,
G = G1e

ky + G2e
−ky. (11)

The “boundary conditions” f(0) = B0 = G(0) are satisfied by,

f = B0 cosh kx, G = B0 cosh ky, (12)

which together with eq. (6) leads to the solution,

Bx = B0 cosh kx cos kz, (13)

By = B0 cosh ky sin kz, (14)

Bz = −B0 sinh kx sin kz + B0 sinh ky cos kz, (15)

This satisfies the last “boundary condition” that Bz(0, 0, z) = 0.
However, this solution does not have helical symmetry.

2.2 Solution in Cylindrical Coordinates

Suppose instead, we look for a solution in cylindrical coordinates (r, θ, z). We again expect
separation of variables, but we seek to enforce the helical symmetry that the field at z + δ
be the same as the field at z, but rotated by angle kδ. This symmetry implies that the
argument kz should be replaced by kz − θ, and that the field has no other θ dependence.

We begin constructing our solution with the hypothesis that,

Br = F (r) cos(kz − θ), (16)

Bθ = G(r) sin(kz − θ). (17)

To satisfy the condition (1) on the z axis, we first transform this to rectangular components,

Bz = F (r) cos(kz − θ) cos θ + G(r) sin(kz − θ) sin θ, (18)

By = −F (r) cos(kz − θ) sin θ + G(r) sin(kz − θ) cos θ, (19)
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from which we learn that the “boundary conditions” on F and G are.

F (0) = G(0) = B0. (20)

A suitable form for Bz can be obtained from (∇ × B)r = 0:

1

r

∂Bz

∂θ
=

∂Bθ

∂z
= kG cos(kz − θ), (21)

so,
Bz = −krG sin(kz − θ), (22)

which vanishes on the z axis as desired.
From either (∇ × B)θ = 0 or (∇ × B)z = 0 we find that,

F =
d(rG)

dr
=

d(krG)

dkr
. (23)

Then, ∇ · B = 0 leads to,

(kr)2 d2(krG)

d(kr)2
+ kr

d(krG)

d(kr)
− [1 + (kr)2](krG) = 0. (24)

This is the differential equation for the modified Bessel function of order 1 [5]. Hence,

G = C
I1(kr)

kr
=

C

2

[
1 +

(kr)2

8
+ · · ·

]
, (25)

F = C
dI1

d(kr)
= C

(
I0 − I1

kr

)
=

C

2

[
1 +

3(kr)2

8
+ · · ·

]
. (26)

The “boundary conditions” (20) require that C = 2B0, so our second solution is,

Br = 2B0

(
I0(kr) − I1(kr)

kr

)
cos(kz − θ), (27)

Bθ = 2B0
I1

kr
sin(kz − θ), (28)

Bz = −2B0I1 sin(kz − θ), (29)

which is the form discussed in [3].

2.3 Magnetic Field Due to a Double Helix

This section follows [6].
We consider a wire that carries current I and is wound in the form of a helix of radius a

and period λ = 2π/k. A suitable equation of this helix is,

x1 = a sin kz, y1 = −a cos kz. (30)
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The magnetic field due to this winding has a nonzero z component along the axis, which is
not desired. Therefore, we also consider a second helical winding,

x2 = −a sin kz, y2 = a cos kz, (31)

which is offset from the first by half a period and which carries current −I . The combined
magnetic field from the two helices has no component along their common axis.

The unit vector l̂1,2 that is tangent to helix 1(2) at a point,

r′1,2 = (x′
1,2, y

′
1,2, z

′) = (±a sin kz′,∓a cos kz′, z′) (32)

has components,

l̂1,2 =
(±2πa cos kz′,±2πa sin kz′, λ)√

λ2 + (2πa)2

, (33)

and the element dl′1,2 of arc length along the helix is related by,

dl′1,2 = l̂′1,2dz′

√
λ2 + (2πa)2

λ
= dz′(±ka cos kz′,±ka sin kz′, 1). (34)

The magnetic field B at a point r = (0, 0, z) on the axis is given by,

B(0, 0, z) =
I

c

∫
1

dl′1 × (r′1 − r)

|r′1 − r|3 − I

c

∫
2

dl′2 × (r′2 − r)

|r′2 − r|3

=
2Ia

c

∫ ∞

−∞

dz′

[a2 + (z′ − z)2]3/2
[x̂(k(z′ − z) sin kz′ + cos kz′)

+ŷ(−k(z′ − z) cos kz′ + sin kz′)]

=
2I

ca

∫ ∞

−∞

dt

(1 + t2)3/2
[x̂(kat sin(kat + kz) + cos(kat + kz))

+ŷ(−kat cos(kat + kz) + sin(kat + kz))]

=
4Ik

c
(x̂ cos kz + ŷ sin kz)

[
1

ka

∫ ∞

0

cos kat

(1 + t2)3/2
dt +

∫ ∞

0

t sin kat

(1 + t2)3/2
dt

]
, (35)

where we made the substitution z′ − z = at in going from the second line to the third.
Equation 9.6.25 of [5] tells us that,

∫ ∞

0

cos kat

(1 + t2)3/2
dt = kaK1(ka) , (36)

where K1 also satisfies eq. (24). We integrate the last integral by parts, using,

u = sin kat, dv =
t dt

(1 + t2)3/2
, so du = ka cos kat dt, v = − 1√

1 + t2
. (37)

Thus, ∫ ∞

0

t sin kat

(1 + t2)3/2
dt = ka

∫ ∞

0

cos kat√
1 + t2

dt = kaK0(ka) , (38)

4



using 9.6.21 of [5]. Hence,

B(0, 0, z) =
4Ik

c
[kaK0(ka) + K1(ka)] (x̂ cos kz + ŷ sin kz). (39)

Both K0(ka) and K1(ka) have magnitudes ≈ 0.5e−ka for ka ≈ 1. That is, the field on the
axis of the double helix is exponentially damped in the radius a for a fixed current I .
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