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1 Problem

Discuss the density and flow of energy and momentum in the electromagnetic fields of an
idealized Hertzian (point) oscillating electric dipole.1

2 Solution

The electric and magnetic fields of an ideal, point Hertzian electric dipole of moment μ cosωt
can be written (in Gaussian units) as,

E = k2μ(r̂ × μ̂) × r̂
cos(kr − ωt)

r
+ μ[3(μ̂ · r̂)r̂ − μ̂]

[
cos(kr − ωt)

r3
+

k sin(kr − ωt)

r2

]
, (1)

H = k2μ(r̂ × μ̂)

[
cos(kr − ωt)

r
− sin(kr − ωt)

kr2

]
, (2)

where r̂ = r/r is the unit vector from the center of the dipole to the observer, μ = μ μ̂ is
the peak electric dipole moment vector,2 ω = 2πf is the angular frequency, k = ω/c = 2π/λ
is the wave number and c is the speed of light [1, 2].

In a spherical coordinate system (r, θ, φ) for which the z-axis is along the direction of the
dipole μ and θ is the angle between μ and r, the fields are,

E = −k2μ sin θ θ̂
cos(kr − ωt)

r
+ μ(2 cos θ r̂ + sin θ θ̂)

[
cos(kr − ωt)

r3
+

k sin(kr − ωt)

r2

]
, (3)

H = −k2μ sin θ φ̂

[
cos(kr − ωt)

r
− sin(kr − ωt)

kr2

]
, (4)

In the far zone, r � λ, only the parts of these fields that vary as 1/r are significant,

Efar = −k2μ sin θ θ̂
cos(kr − ωt)

r
, Hfar = −k2μ sin θ φ̂

cos(kr − ωt)

r
. (5)

1This problem is an extension of
http://kirkmcd.princeton.edu/examples/nearzone.pdf
Some additional details, including discussion of the scalar and vector potentials of a Hertzian dipole in both
the Coulomb and Lorenz gauges, are given in prob. 2 of
http://kirkmcd.princeton.edu/examples/ph501set8.pdf
Some consideration of Hertz vectors and scalars is given in the Appendix of
http://kirkmcd.princeton.edu/examples/smallloop.pdf

2We reserve the symbol p for the momentum density of the electromagnetic field.
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These fields are often called the radiation fields. Note that even in the near zone, r <∼ λ,
terms of the form (5) are present, and we say that the radiation fields exist in the near zone
as well as in the far zone.

Of course, in the near zone of the dipole the radiation fields are smaller that the other
components of E and H. The most prominent feature of the fields in the near zone is that
the electric field looks a lot like that of an electrostatic dipole, as shown in the figure below.
Because field patterns that look like radiation are discernable only for r >∼ λ, there may be
an impression that the radiation is created at some distance from an antenna, rather than
at the antenna itself.
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2.1 Energy Density

According to Maxwell the density of energy stored in the electromagnetic field (in vacuum)
is,

u =
E2 + H2

8π
. (6)

For the fields (3)-(4), we find,

u =
μ2

4π

{[
k4 sin2 θ

r2
+

3cos2 θ + 1

2r6

]
cos2(kr − ωt) +

k2(1 + cos2θ)

r4
sin2(kr − ωt)

−
[
k3 sin2 θ

2r3
− k(3 cos2 θ + 1)

2r5

]
sin 2(kr − ωt)

}
. (7)

The first term of eq. (7) is the energy associated with the radiation fields, while the second
term is the electrostatic energy of the dipole μ multiplied by the wave function cos2(kr−ωt).
The other three terms are due to interference between the radiation fields and the quasistatic
field of the oscillating dipole. Rewriting eq. (7) in terms of its Fourier components, we have,

u =
μ2

8π

{
k4 sin2 θ

r2
+

k2(1 + cos2 θ)

r4
+

3cos2 θ + 1

2r6

+

[
k4 sin2 θ

r2
− k2(1 + cos2 θ)

r4
+

3cos2 θ + 1

2r6

]
cos 2(kr − ωt)

−
[
2k3 sin2 θ

r3
− k(3 cos2 θ + 1)

r5

]
sin 2(kr − ωt)

}
. (8)

It is of interest to record the total energy density,

U(t) =

∫
u(r, t) dVol = 2π

∫ ∞

0

r2 dr

∫ 1

−1

d cos θ u(r, t). (9)

The part of the energy density (8) associated with radiation varies as 1/r2, so the integral of
this energy density is infinite (since the forms (1)-(2) tacitly assumed that the antenna has
been radiating “forever”). Hence, we obtain a finite result only if we restrict our attention
to the energy Unear in the “near zone” of the antenna, which corresponds to the terms in
eq. (8) that vary more quickly than 1/r2. Furthermore, we obtain a finite result only if we
consider the energy in the region outside some small, but finite, radius a � λ. Thus,

Unear =
μ2

4

∫ ∞

a

r2 dr

∫ 1

−1

d cos θ

{
k2(1 + cos2 θ)

r4
+

3cos2 θ + 1

2r6

+

[
−k2(1 + cos2 θ)

r4
+

3cos2 θ + 1

2r6

]
(cos 2kr cos 2ωt + sin 2kr sin 2ωt)

−
[
2k3 sin2 θ

r3
− k(3 cos2 θ + 1)

r5

]
(sin 2kr cos 2ωt − cos 2kr sin 2ωt)

}

=
μ2

4

∫ ∞

a

dr

{
8k2

3r2
+

2

r4
+

[
−8k2

3r2
+

2

r4

]
(cos 2kr cos 2ωt + sin 2kr sin 2ωt)
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−
[
8k3

3r
− 4k

r3

]
(sin 2kr cos 2ωt − cos 2kr sin 2ωt)

}

≈ μ2

4

2

3a3
(1 + cos 2ωt) =

μ2 cos2 ωt

3a3
. (10)

The near-field energy oscillates in time, which implies there is an oscillatory exchange of
energy between the electromagnetic fields and the source that drives the dipole antenna.

2.2 Energy Flow

Since the radiated power comes from the antenna (from the power supply that drives the
antenna), there must be a flow of energy out from the antenna into the surrounding space.
The usual electrodynamic measure of energy flow is Poynting’s vector [3],

S =
c

4π
E ×H. (11)

When we use the fields (1)-(2) to calculate the Poynting vector we find six terms, some
of which do not point along the radial vector r̂,

S =
c

4π

{
k4μ2 sin2 θ θ̂ × φ̂

[
cos(kr − ωt)

r2
− cos(kr − ωt) sin(kr − ωt)

kr3

]

−k2μ2(2 cos θ r̂ + sin θ θ̂) × sin θ φ̂

[
cos2(kr − ωt) − sin2(kr − ωt)

r4

+cos(kr − ωt) sin(kr − ωt)

(
k

r3
− 1

kr5

)]}

=
cμ2

4π

{
sin2 θ r̂

[
k4 cos2(kr − ωt)

r2
− k2 cos 2(kr − ωt)

r4
− k3 sin 2(kr − ωt)

r3

(
1 − 1

2k2r2

)]

+sin 2θ θ̂

[
k2 cos 2(kr − ωt)

r4
+

k3 sin 2(kr − ωt)

2r3

(
1 − 1

k2r2

)]}
. (12)

Since the functions cos 2(kr−ωt) and sin 2(kr−ωt) can be both positive and negative, part
of the energy flow is inwards at times, rather than outwards as expected for pure radiation.
The presence of an inward flow of energy reinforces the conclusion of the previous section
that there is an oscillatory exchange of energy between source and fields, rather than a simple
flow of energy from the source to the fields.

However, we obtain a simple result if we consider only the time-averaged Poynting vector,
〈S〉. Noting that 〈cos2(kr − ωt)〉 = 1/2 and 〈cos 2(kr − ωt)〉 = 〈sin 2(kr − ωt)〉 = 0, eq (12)
leads to,

〈S〉 =
ck4μ2 sin2 θ

8πr2
r̂. (13)

The time-average Poynting vector is purely radially outwards, and falls off as 1/r2 at all
radii, as expected for a flow of energy that originates in the oscillating point dipole. The
time-average angular distribution d 〈P 〉 /dΩ of the radiated power is related to the Poynting
vector by,

d 〈P 〉
dΩ

= r2 r̂ · 〈S〉 =
ck4μ2 sin2 θ

8π
=

μ2ω4 sin2 θ

8πc3
, (14)
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which is the expression usually derived for dipole radiation in the far zone. Here we see that
this expression holds in the near zone as well.

We conclude that radiation, as measured by the time-averaged Poynting vector, exists in
the near zone of an antenna as well as in the far zone.

We verify that the Poynting vector S corresponds to the flow of energy such that the
continuity equation,

∇ · S +
∂u

∂t
= 0, (15)

is satisfied. From eq. (8) we have,

∂u

∂t
=

cμ2

4π

[
k5 sin2 θ

r2
− 2k3

r4
+

k(3 cos2 θ + 1)

2r6

]
sin 2(kr − ωt)

+
cμ2

4π

[
2k4 sin2 θ

r3
− k2(3 cos2 θ + 1)

r5

]
cos 2(kr − ωt), (16)

while from eq.(12) we find,

∇ · S =
1

r2

∂

∂r
(rSr) +

1

r sin θ

∂

∂θ
(sin θSθ)

=
cμ2

4π

{
sin2 θ

[
−k5 sin 2(kr − ωt)

r2
+

2k3 sin 2(kr − ωt)

r4
+

2k2 cos 2(kr − ωt)

r5

−2k4 cos 2(kr − ωt)

r3

(
1 − 1

2k2r2

)
+

k3 sin 2(kr − ωt)

r4

(
1 − 3

2k2r2

)]

+(3 cos2 θ − 1)

[
2k2 cos 2(kr − ωt)

r5
+

k3 sin 2(kr − ωt)

r4

(
1 − 1

k2r2

)]}

=
cμ2

4π

[
−k5 sin2 θ

r2
+

2k3

r4
− k(3 cos2 θ + 1)

2r6

]
sin 2(kr − ωt)

−cμ2

4π

[
2k4 sin2 θ

r3
− k2(3 cos2 θ + 1)

r5

]
cos 2(kr − ωt) = −∂u

∂t
. (17)

We note that the part of the energy density due only to the radiation fields,

urad =
k4μ2 sin2 θ

4πr2
cos2(kr − ωt), (18)

and the part of the Poynting vector due only to the radiation fields,

Srad =
ck4μ2 sin2 θ

4πr2
cos2(kr − ωt) r̂, (19)

obey the continuity equation,

∇ · Srad +
∂urad

∂t
= 0. (20)

We can identify part of the energy density as being due to the quasistatic electric dipole,

udipole =
μ2(3 cos2 θ + 1)

8πr6
cos2(kr − ωt). (21)
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However, there is no magnetic field, and hence no Poynting vector, associated with the
quasistatic electric dipole. Hence, conservation of energy in the field of the quasistatic
electric dipole can be accounted for only when we consider the interference terms of the
Poynting vector that involve the quasistatic dipole fields and the so-called intermediate-zone
fields of eqs. (3)-(4) that vary as 1/r2.

2.3 Momentum Density

As noted by Abraham [4],3 the Poynting vector plays the dual role of describing the energy
flow in the electromagnetic field as well as the density p of momentum stored in the field,

p =
E × H

4πc
=

S

c2
, (22)

where we restrict our attention to waves in vacuum.4

From eq. (12) we obtain the momentum density of the fields of the oscillating dipole,

p =
μ2

4πc

{
sin2 θ r̂

[
k4 cos2(kr − ωt)

r2
− k2 cos 2(kr − ωt)

r4
− k3 sin 2(kr − ωt)

r3

(
1 − 1

2k2r2

)]

+sin 2θ θ̂

[
k2 cos 2(kr − ωt)

r4
+

k3 sin 2(kr − ωt)

2r3

(
1 − 1

k2r2

)]}
. (23)

The part of the momentum density associated only with the radiation fields is,

prad =
Srad

c2
=

urad

c
r̂ =

k4μ2 sin2 θ

4πcr2
cos2(kr − ωt) r̂. (24)

3 Momentum Flux

If we know the velocity with which the momentum is flowing, we can identify a momentum
flux (tensor) Π as the product of the momentum density and its velocity. The radiation
fields propagate radially with velocity c, so we identify,

Πrad,rr = cprad,r = urad =
k4μ2 sin2 θ

4πr2
cos2(kr − ωt). (25)

For a more general consideration of momentum flux, we note that the time rate of change
of momentum density, ∂p/∂t, has dimensions of a force density. We recall that Maxwell
described the forces associated with electromagnetic fields in terms of the stress tensor T,
whose components are (for fields in vacuum),

Tij =
EiEj + HiHj

4π
− uδij , (26)

3Variants of this relation were discussed earlier by Thomson [5, 6] and by Poincaré [7].
4For waves in a dielectric medium one must also consider the momentum of the oscillating dipoles of

that medium, which requires some care [8, 9].
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where u is the energy density (6). The volume force f density associated with the fields is
the divergence of the stress tensor,

f = ∇ · T, (27)

and the equation of continuity for electromagnetic field momentum is,

∂p

∂t
− ∇ · T = 0. (28)

This leads to the interpretation of,

Π = −T = uδij − EiEj + HiHj

4π
(29)

as the momentum flux tensor.
The six distinct momentum flux components for the fields of the Hertzian dipole are,

Πrr =
μ2

4π

{[
k4 sin2 θ

r2
+

1 − 5 cos2 θ

2r6

]
cos2(kr − ωt) +

k2 cos 2θ

r4
cos 2(kr − ωt)

−
[
k3 sin2 θ

r3
− k(1 − 5 cos2 θ)

2r5

]
sin 2(kr − ωt)− k2 cos2 θ

r4

}
, (30)

Πrθ = Πθr = −μ2 sin 2θ

4π

[
k2 sin 2(kr − ωt)

r5
+

cos2(kr − ωt)

r6

]
, (31)

Πrφ = Πφr = 0, (32)

Πθθ =
μ2

8π

{
5 cos2 θ − 1

r6
cos2(kr − ωt) +

k2(1 − 3 cos2 θ)

r4
cos 2(kr − ωt)

+
k(5 cos2 θ − 1)

r5
sin 2(kr − ωt) +

k2(1 + cos2 θ)

r4

}
, (33)

Πθφ = Πφθ = 0, (34)

Πφφ =
μ2

8π

{
3 cos2 θ + 1

r6
cos2(kr − ωt) − k2(1 + cos2 θ)

r4
cos 2(kr − ωt)

+
k(3 cos2 θ + 1)

r5
sin 2(kr − ωt) +

k2(3 cos2 θ − 1)

r4

}
. (35)

The momentum flux due only to the radiation fields is the first term of Πrr , as anticipated
in eq. (25). The remaining terms of the tensor Π describe the somewhat nontrivial flow of
momentum in the near zone of the antenna.

For comparison, we record the momentum flux associated with a static electric dipole μ.
Then, the magnetic field vanishes and the electric field is simply,

Estatic = μ
3(μ̂ · r̂)r̂ − μ̂

r3
= μ

2 cos θ r̂ + sin θ θ̂

r3
. (36)

The field energy density is,

ustatic = μ2 3 cos2 θ + 1

8πr6
, (37)
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and the components of the momentum-flux tensor are,

Πstatic,rr = μ2 1 − 5 cos2 θ

8πr6
, (38)

Πstatic,rθ = Πstatic,θr = −m2 sin 2θ

4πr6
, (39)

Πstatic,rφ = Πstatic,φr = 0, (40)

Πstatic,θθ = μ2 5 cos2 θ − 1

8πr6
, (41)

Πstatic,θφ = Πstatic,φθ = 0, (42)

Πstatic,φφ = μ2 3 cos2 θ + 1

8πr6
. (43)

4 Wave Velocities

4.1 Phase/Wavefront Velocity

Since the electromagnetic fields of a Hertzian dipole are not plane waves we cannot simply
speak of a phase velocity. But, we can consider the velocity of a wavefront, which is the
essence of the phase velocity. Since the fields of an oscillating electric dipole are transverse
magnetic, it is clearest to consider wavefronts of the magnetic field, eq. (4), which vanish on
spherical surfaces given by,

tan(kr − ωt) = kr, i .e., t =
r

c
− 1

ω
tan−1 kr +

nπ

ω
. (44)

We designate the radial velocity of these surfaces as the phase velocity,

vp =
dr

dt
=

1

dt/dr
= c

(
1 +

1

k2r2

)
> c. (45)

In the near zone this phase velocity exceeds the speed of light in vacuum, while it approaches
the speed of light in the far zone.

4.2 Energy/Group Velocity

As discussed in eq. (17) of [10], we take the group velocity to be equal to the (time-averaged)
energy velocity,

vg =
〈S〉
〈u〉 =

c

1 + cot2 θ
k2r2 + 3 cos2 θ+1

2k4r4 sin2 θ

< c, (46)

recalling eqs. (8) and (13). The group velocity is less than the speed of light at all angles
and all radii, and is extremely small along the direction of the dipole moment, where the
strength of the radiation is very weak. It is also extremely small for kr � 1, although one
might question the meaning of the group velocity on this tiny length scale.

Note that vgvp �= c2.
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4.3 Instantaneous Energy-Flow Velocity

An instantaneous velocity v of the flow of energy in the electromagnetic field is sometimes
taken to be the ratio of the Poynting vector to the energy density,5

v =
S

u
= 2c

E ×B

E2 + B2
. (47)

Note that the magnitude of v is bounded by,6

v = |v| ≤ c
2EB

E2 + B2
≤ c , (48)

and that the maximal v = c only occurs when E = B and E ⊥ B.
Referring to eqs. (18)-(19) we see that for large r,

v = c r̂ (kr � 1), (49)

which seems quite satisfactory. In contrast, for kr � 1, eqs. (8) and (12) imply,

u → μ2

8πr6
(3 cos2 θ + 1)[cos2(kr − ωt) + kr sin 2(kr − ωt)] (kr � 1), (50)

and,

S → cμ2k

8πr5
(sin2 θ r̂ − sin 2θ θ) sin 2(kr − ωt), (kr � 1). (51)

Then,

v → ckr

3 cos2 θ + 1
(sin2 θ r̂ − sin 2θ θ)

sin 2(kr − ωt)

cos2(kr − ωt) + kr sin 2(kr − ωt)
,

v = |v| → ckr sin θ√
3 cos2 θ + 1

∣∣∣∣ sin 2(kr − ωt)

cos2(kr − ωt) + kr sin 2(kr − ωt)

∣∣∣∣ (kr � 1). (52)

The largest values of v occur near the end of first and third quarters of every cycle, when
cos(kr − ωt) ≈ 0, and,

v → c sin θ√
3 cos2 θ + 1

≤ c [kr � 1, cos(kr − ωt) = 0]. (53)

The physical significance of the classical energy flow velocity (47) is unclear except at
large r. In a quantum view, the electromagnetic fields are in general associated with virtual
photons whose velocity can exceed c,7 although photons can be said to have a definite velocity
only once they have been observed; a variable velocity v(r, θ, t) such as eq. (52) corresponds
to the distribution of possible velocities in an ensemble of virtual photons.

5J.J. Thomson developed the notion of field momentum density (22) essentially according to p = S/c2 =
uv/c2 [5, 6]. See also eq. (19), p. 79 of [11], and p. 6 of [12]. The idea that an energy flux vector is the
product of energy density and energy flow velocity seems to be due to Umov [13] (1874), based on Euler’s
continuity equation [14] for mass flow, ∇·(ρv) = −∂ρ/∂t. Poincaré applied this notion to an électromagnétic
fluide fictif between eqs. (3) and (4) of [7] (1900). The energy-flow velocity (46) appeared on p. 392 of the
textbook [15] and on p. 794 of [16]. See also[17]-[20]. Nonstandard definitions are considered in [21]-[23].

6(Nov. 3, 2020). Thanks to Oliver Johns for pointing this out.
7For a representation of electromagnetic fields in terms of electromagnetic plane waves with wavespeeds

that can be other than c, see [24].
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