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In 1822 [1, 2], Ampère argued that the magnetic interaction between two electrical circuits
could be written as a double integral over the current elements in the two circuits, with the
vector integrand being along the line of centers of pairs of current elements. This insured that
the total force on each circuit obeyed Newton’s third law, i.e., that mechanical momentum
is conserved. Ampère hesitated to interpret the integrand as the force law between isolated
current elements, perhaps because the integrand did not factorize. In 1845, Grassmann [5]
gave an alternate form of the integrand which did factorize (into what is now called the
Biot-Savart form), 1 such that the force on each circuit had the same value as in Ampère’s
calculation, but the forces on a pair of isolated current elements did not obey Newton’s
third law, i.e., such that mechanical momentum would not be conserved in the interaction
of isolated current elements. Maxwell (Art. 527 of [8]) favored Ampère over Grassmann (and
the school of Neumann and Weber) in this matter, and was skeptical of the notion of free
moving charges.2 The concept of free moving charges was revived by J.J. Thomson beginning
with speculations as to electromagnetic mass/momentum (1881) [9], and continuing with a
concept of momentum stored in the electromagnetic field (1891) [11, 12], with the field-
momentum density being the Poynting vector [10] divided by c2, pEM = S/c2, where c is the
speed of light in vacuum.3,4

Thomson was also the first to consider (1904) [18, 19, 20] an example in which an elec-
tromechanical system initially “at rest” leads to motion of part of the system if the magnetic
field later drops to zero. This motion was attributed to a conversion of the initial electromag-
netic field momentum into final mechanical momentum. However, Thomson did not notice
that it was odd that a system initially “at rest” could end with nonzero total momentum.5

Thomson’s 1904 paradox seems to have gone unnoticed until 1947 when Cullwick [27]-[68]
discussed an electric charge and a current loop or toroidal magnet.6 Then in 1949, Slepian

1This form was given by Ampère in 1825 [6], but so little emphasized by him that to this day few are
aware of his effort on this.

2For example, sec. 65 of [7] presented what is now called the Lorentz force law, but applied it only
to currents in closed circuits. In contrast, Maxwell (sec. 57 of [7]) regarded the vector potential A at the
location of an electric charge q as providing a measure, qA/c (in Gaussian units, where c is the speed of light
in vacuum), of electromagnetic momentum and an interpretation of Faraday’s electrotonic state (secs. 60-61
of [3]. That Faraday associated with some kind of momentum with this state is hinted in sec. 1077 of [4].

3See [26] for verification that the total momentum of a pair of moving charges is constant to order 1/c2

once the electromagnetic field momentum is considered.
4Maxwell argued (Arts. 792-793 of [8]) that the transverse electric and magnetic fields of light wave

exert a (radiation) pressure perpendicular to these field lines, which pressure is equal the energy density
u = (E2 +B2)/8π = E2/4π (in Gaussian units) of the fields. He did not appear to make the connection that
the transport of this energy at lightspeed implies a flux of energy equal to cu = cE2/4π = c |E × B| /4π =
S, nor that the momentum density in the light wave is pEM = u/c = S/c2. Experimental confirmation
of the radiation pressure of light in 1901 [15, 17] is, however, now typically considered as evidence that
electromagnetic waves carry momentum.

5For a review of Thomson’s work on these topics, see [90].
6A variant of Thomson’s example was discussed by Page (1932) [25], which contains net field angular
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published a delightful version of it involving a (quasistatic) AC circuit [29], arguing that once
electromagnetic field momentum is taken into consideration, total momentum is conserved
and the device cannot be used for electromagnetic rocket propulsion.

Static systems (“at rest”) can contain nonzero electromagnetic field momentum, although
this tiny effect (of order 1/c2) has never been demonstrated experimentally. Such systems also
contain a net flow of electromagnetic energy, according the relation S = c2 pEM, as perhaps
first noted (1960) in sec. 5.4 of [32]. If the system is actually static, there must be a “return”
flow of nonelectromagnetic energy in the system. This “return” flow of nonelectromagnetic
energy will be associated with a nonzero, nonelectromagnetic momentum in the system, such
that the total momentum of a system “at rest” is actually zero.

However, people were not ready to accept this logic in 1960. For example, two papers
[33, 34] (published in 1964 and 1965) considered it plausible (as did Thomson in 1904 [19])
that a system “at rest” could contain nonzero total momentum (of order 1/c2), and that
such an isolated system could transform itself to a final state in which one part was in linear
motion and another part remained at rest.7

In contrast, Shockley (1967) [37] argued that the total momentum of an isolated elec-
tromechanical system “at rest” must be zero, and if either the electric or the magnetic field
of the system later goes to zero, any motion of one part of the final system must be com-
pensated by motion of another part with equal and opposite momentum. For this to hold,
there must be some momentum “hidden” the initial system “at rest”, and some “hidden”
force must act within this system as the fields vanish.

Shockley’s paper popularized the term “hidden” momentum (although it was no longer
hidden once identified by Shockley and others),8 and essentially all subsequent use of this
term has been for electromechanical examples “at rest” that contain nonzero net electro-
magnetic field momentum [35, 36, 38, 39, 41, 42, 47, 48, 50, 51, 53, 54, 56, 57, 52, 58, 61,
62, 63, 69, 70, 73, 91, 92].9 However, in these examples of systems “at rest”, the nonzero
net electromagnetic field momentum was not called “hidden”, although it has never been
detected, and is equal and opposite to the “hidden” nonelectromagnetic (i.e., mechanical)
momentum of the system.

It is useful to note that in this view of “hidden” momentum, it can only arise in (elec-
tro)mechanical systems with “moving parts” (Ampèrian currents), and is excluded in sys-
tems in which all magnetic effects are due to hypothetical (Gilbertian) magnetic charges or
dipoles.10

momentum, but zero total (linear) momentum.
7Such behavior was characterized as that of a “bootstrap spaceship” in [40]. Earlier discussion of (im-

possible) electromagnetic spaceships had been given in [29]. See also [99].
8The physical origin of “hidden” momentum was identified for a particular example in [35] shortly prior

to Shockley’s paper.
9The possibility of “hidden” momentum in a gravitational system is considered [56].

The term “hidden” momentum has been used to characterize an interesting phenomenon in a binary
system of spinning neutron stars [76], but the author considers that this usage is not justified [87], as also
discussed in sec. 4.3 below.

10This result is implicit in [19], as noted in [90], and was explicity stated in [50].
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1 Electromagnetic Field Momentum

We recall that the (macroscopic) electromagnetic momentum PEM of a system is most gen-
erally identified as the volume integral of 1/c2 times the Poynting energy-flux vector field
[10],

S =
c

4π
E× B, (1)

where we use Gaussian units, c is the speed of light in vacuum, and E and B are the
(macroscopic) electric and magnetic fields of the system. That is,

PEM =

∫
S

c2
dVol =

∫
E ×B

4πc
dVol, (2)

as noted by Thomson [11, 12], by Heaviside [13, 23] and by Poincaré [14].11

The electromagnetic field momentum in quasistatic electromechanical systems can be
written three other ways (see, for example, [65, 66] and Appendix B),

PEM =

∫
E× B

4πc
dVol ≈

∫
ρA(C)

c
dVol ≈

∫
V (C)J

c2
dVol ≈

∫
J · E
c2

r dVol, (3)

where ρ is the electric charge density, A(C) is the vector potential in the Coulomb gauge,12

and V (C) is the instantaneous Coulomb potential.13,14 The second form is the electromag-
netic part of the canonical momentum of the charges of the system anticipated by Faraday’s
electrotonic state [3, 4] and formalized by Maxwell (secs. 22-24 and 57 of [7], see also Ap-
pendix C), the third form appears to have been introduced by Furry [41], and the fourth
form is due to Aharonov [47].

2 A Narrow Definition of “Hidden” Momentum

In the rest frame of the center of mass/energy of a static system (where the total momentum
is zero), the “hidden” mechanical momentum was defined by Hnizdo (eq. (22) of [53]) as,15

Phidden = −PEM = −
∫

E × B

4πc
dVol ≈ −

∫
ρA(C)

c
dVol ≈ −

∫
V (C)J

c2
dVol ≈ −

∫
J · E
c2

r dVol.

(4)

11Expressions for momentum density that combine the electromagnetic field momentum with the momen-
tum of interacting matter in media with electric and/or magnetic polarization have been given by Abraham
[16, 21] and by Minkowski [22]. We do not here enter into the “perpetual” debate (see, for example, [94]) as
to the merits of the various expressions for momentum density, except for some comments in sec. 4.1.

12The second form of eq. (3) is actually gauge invariant if it is written in terms of the (gauge-invariant)
rotational part, Arot, of the vector potential, which equals the vector potential in the Coulomb gauge.

13V (C) is the electric scalar potential in the Coulomb gauge.
14For discussion of alternative forms of the electromagnetic momentum (and energy and angular momen-

tum) in systems with harmonic time dependence, see, for example, [75].
15The definition (4) leads to ambiguities in macroscopic electromagnetic media, where one can define the

“electromagnetic momentum” in various ways, including the famous Abraham [16, 21] and Minkowski [22]
forms. This ambiguity is another reason to seek a more general definition of “hidden” momentum.
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In a frame where the center of mass/energy has nonzero velocity vcm, “hidden” (mechanical)
momentum given by eq. (80) of [53] as,

Phidden = Pmech − Mvcm, (5)

where M = U/c2 and U is the total energy, electromagnetic plus mechanical, of the moving
system.

The definition (5) appears to have been little used,16 and essentially all discussions of
“hidden” momentum until recently [37, 35, 36, 38, 39, 41, 42, 48, 50, 54, 56, 52, 73] considered
only the rest frame of the center of mass/energy of the system, where definition (4) was used.

The use of the “relativistic mass” M = U/c2 rather than the rest mass M0 in eq. (5)
is needed so that the momentum of a moving mass, γM0v = Mv is not considered to
be “hidden”.17 A consequence of this convention is that if a static electromagnetic field
has nonzero momentum PEM, and field energy UEM, we can consider this field to have an
equivalent mass M = UEM/c2. The velocity of the center of mass/energy of a static field is
zero, so if we apply the definition (5) to the static field, we are led to say that its momentum
PEM is a “hidden” momentum. However, past usage of the term “hidden” momentum has
been restricted to “mechanical” (sub)systems.

The definition (5) implies that the “overt” momentum certain mechanical systems would
be called “hidden” (see, for example, [81, 101]), which suggests the need for a better defini-
tion.

3 A New Definition of “Hidden” Momentum

Recently, a definition of “hidden” momentum has been proposed [80] which can be applied to
purely mechanical systems as well, where a subsystem with a specified volume can interact
with the rest of the system via contact forces and/or transfer of mass/energy across its
surface (which can be in motion),18

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (6)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, U is its
total energy, xcm is its center of mass/energy, vcm = dxcm/dt, p is its momentum density,
ρ = u/c2 is its “mass” density, u is its energy density, vb is the velocity (field) of its boundary,
and,

fμ =
∂T μν

∂xν

= ∂0T
μ0 + ∂jT

μj, (7)

16It was used in sec. 2 of [72].
17The “hidden” momentum (5) is not a component of a four-vector. It does not make sense to define a

corresponding “hidden” energy, which would be Umech − Mmechc
2, as this is identically zero.

18However, as noted in sec. 4 below, our interpretation of eq. (6) excludes that an “mechanical” subsystem
can have “hidden” momentum unless its volume also supports a field.
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is the 4-force density exerted on the subsystem by the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.19,20,21

An important qualification to the first form of eq. (6) is that the values of p and ρ at the
boundary are the limit of those just inside the boundary.

Since f0 involves derivatives of the stress tensor, these derivatives are infinite at (almost)
any boundary of a subsystem, with a possible implication that “hidden” momentum resides
at all such boundaries. This view renders the concept of “hidden” momentum to be a
mathematical curiosity, with little physical significance. The attitude in this note is that
such boundary delta functions are unphysical, and should not be included in the second
form of eq. (6). Illustrations of analyses with and without such delta functions are given in
[100, 101].

3.1 Rationale

The rationale for definition (6) begins with consideration of a subsystem of an isolated (but
not necessarily bounded) system.22,23 The subsystem occupies a specified volume (possi-
bly unbounded) and has a bounding surface (possibly at infinity). The subsystem has a
(symmetric) stress-energy-momentum 4-tensor T μν that is defined to be zero outside the
subsystem volume. The tensor T μν inside the subsystem volume is not necessarily equal
to the total stress-energy-momentum tensor there; for example the subsystem might be the
(macroscopic) fields within the volume or the (macroscopic) matter there.

The total mass/energy of the subsystem is,

U =

∫
T 00 dVol, (8)

and we define the effective mass of the subsystem as,

M =
U

c2
=

∫
T 00

c2
dVol =

∫
ρ dVol, (9)

19That “hidden” momentum is related to the stress tensor was pointed out in [47], eqs. (10)-(12), where
only stationary systems were considered. In such cases, f0 = ∂T 0i/∂xi.

20The definition (6) is a generalization to nonstationary systems of eq. (7) of [56], as further discussed in
sec. 4.1.

21Since f0 = ∂0T
00 = ∂u/∂ct can be identified with f · v/c, where f is the force density on matter with

velocity v, the last form of the definition (6) is a generalization of eq. (14) of [62]. Unfortunately, all attempts
to apply that eq. (14) to examples involving “hidden” momentum [63, 64, 69, 70, 91, 92] suffer somewhat
from lack of clarity as to which subsystem the terms in that equation apply.

22We distinguish an isolated system from a closed system in the thermodynamic sense. Neither matter
nor energy flows across the bounding surface of an isolated system, while energy but not matter can flow
across the boundary of a closed system.

23For an isolated, closed system with total stress-energy-momentum tensor Tμν, the 4-divergence of the
latter is zero, ∂Tμν/∂xν = 0. If the system contains two subsystems A and B then fμ

A = ∂Tμν
A /∂xν =

−∂Tμν
B /∂xν = −fμ

B , where fμ
B is the 4-force density exerted by subsystem A on B. If subsystems A and

B occupy different volumes, perhaps having a surface in common, then within subvolume A, fμ
A = 0, and

within subvolume B, fμ
B = 0, although there can formally be nonzero, equal and opposite force densities on

the surface between the two systems (if they are in “contact”.
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where we define the effective mass density of the subsystem to be ρ = T 00/c2. The center of
mass/energy of the subsystem is at position,

xcm =
1

M

∫
T 00

c2
x dVol. (10)

Then,

dM

dt
=

∫
∂0T

00

c
dVol +

∮
boundary

T 00

c2
(vb · dArea), (11)

and,

d

dt
(Mxcm) =

dM

dt
xcm + M

dxcm

dt
=

∫
∂0T

00

c
x dVol +

∮
boundary

T 00

c2
x (vb · dArea), (12)

where xμ = (ct,x), ∂μ = ∂/∂xμ = (∂/∂ct, ∇), and vb is the velocity (field) of the boundary.
Hence,

Mvcm = M
dxcm

dt
=

d

dt
(Mxcm) − dM

dt
xcm

=

∫
∂0T

00

c
(x − xcm) dVol +

∮
boundary

T 00

c2
(x − xcm) (vb · dArea)

=

∫
∂0T

00

c
(x − xcm) dVol +

∮
boundary

(x − xcm) (ρvb · dArea). (13)

While the stress-energy-momentum tensor for an isolated system has zero 4-divergence,
this is not necessarily the case for the subsystem under consideration. Rather, the possibly
nonzero 4-vector,

fμ = ∂νT
νμ = ∂νT

μν , (14)

describes the 4-force density exerted on the subsystem by the rest of the system. If the
stress-energy-momentum tensor is nonzero just inside the boundary, the 4-force density can
have delta-function contributions on the boundary (as T μν is defined to be zero outside the
boundary), which must be considered carefully in the following. Of course, fμ is zero outside
the boundary of the subsystem.

Using eq. (14) we can write,

∂0T
00 = f0 − ∂jT

0j, (15)

where both f0 and ∂jT
0j can have delta functions on the boundary. Then, noting that the

momentum density p has components pj = T 0j/c, the volume integral in eq. (13) can be
written as,

∫
∂0T

00

c
(x − xcm) dVol =

∫
f0

c
(x − xcm) dVol −

∫
∂jT

0j

c
(x− xcm) dVol

6



=

∫
f0

c
(x− xcm) dVol −

∫
∂j[T

0j(x − xcm)]

c
dVol +

∫
T 0j ∂jx

c
dVol

=

∫
f0

c
(x− xcm) dVol −

∮
boundary

T 0j(x− xcm)

c
dAreaj +

∫
p dVol

=

∫
f0

c
(x− xcm) dVol −

∮
boundary

(x − xcm) (p · dArea) + P. (16)

Combining eqs. (13) and (16), we have,

P = Mvcm +

∮
boundary

(x− xcm) (p− ρvb) · dArea −
∫

f0

c
(x− xcm) dVol. (17)

In view of the definition of “hidden” momentum given in sec. 2, we might consider either
or both of the integrals in eq. (17) to be the “hidden” momentum of the subsystem.24 To
clarify this ambiguity, we consider a particular example.

3.2 Plane Electromagnetic Wave

As a test case for a new definition of “hidden” momentum we consider a plane electromagnetic
wave in vacuum,

E = E0 cos(kz − ωt) x̂, B = E0 cos(kz − ωt) ŷ, (19)

in Gaussian units, where ω = kc.
We take the attitude that the momentum of a plane electromagnetic wave is not “hidden”.

3.2.1 The Volume Integral

It proves to be simpler to consider first volume integral in eq. (17),

−
∫

f0

c
(x − xcm) dVol. (20)

The energy density u in this wave is,

u =
E2 + B2

8π
=

E2
0 cos2(kz − ωt)

4π
, (21)

24If we restrict our attention to (sub)systems that formally have infinite extent, but negligible energy and
momentum densities at “infinity”, then the boundary integral can be neglected, and we can consider eq. (17)
as an extension of eq. (5),

Phidden = P − Mvcm = −
∫

f0

c
(x − xcm) dVol (negligible boundary integral). (18)

Our eq. (18) is eq. (3) of [76], whose authors omitted the boundary integral when integrating their eq. (2) by
parts. Equation (18) is equivalent to eq. (8) of [92], where the momentum is called “internal” rather than
“hidden”.
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and its density p of electromagnetic momentum is,

p =
S

c2
=

E × B

4πc
=

E2
0 cos2(kz − ωt)

4πc
ẑ =

u

c2
c = ρ c, (22)

where ρ = u/c2 is the (effective) mass/energy density, and c = c ẑ is the velocity of the wave.
For a plane electromagnetic wave, we note that its stress tensor is,

T μν = gαβF
μαF νβ − 1

4
gμνFαβF αβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

u 0 0 cpz

0 0 0 0

0 0 0 0

cpz 0 0 −u

⎞
⎟⎟⎟⎟⎟⎟⎠

. (23)

where T 0z = cpz = u, T zz = −E2
0 cos2(kz − ωt)/4π = −u, the metric tensors are,

gαβ = gαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (24)

and the electromagnetic field tensors are,

Fαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, F αβ = gαγgβδFγδ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(25)
Then, f0 = ∂T 0ν/∂xν = ∂u/∂ct + ∂u/∂z vanishes in the volume of integration according

to eq. (21), while having δ-function terms on its surface, if we take the electromagnetic stress
tensor of the volume to be zero outside it. We consider that the volume integral (20) is taken
over only the interior of the volume of the subsystem, in which case the integral vanishes.

This confirms that the definition of “hidden” momentum as the volume integral in eq. (6)
is consistent with plane electromagnetic waves in vacuum having zero “hidden” momentum.

3.2.2 The Surface Integral

If the “hidden” momentum of the plane wave is zero, then according to eq.(6) we should also
have that,

Phidden = P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = 0. (26)
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We now consider the volume associated with the plane wave (19) to be a rectangular
parallelepiped of length L along the z-direction, with area A perpendicular to ẑ and volume
V = AL. We take the length L to be an integral number of wavelengths. The parallelepiped
has velocity v = v ẑ, so the velocity of its boundary is vb = v, and we consider it at the
instant when it extends over the interval z0 < z < L + z0 where z0 = vt.

The total effective mass inside the parallelepiped is,

M = 〈ρ〉 V =
E2

0V

8πc2
, (27)

since its length is an integer number of wavelengths. The averaging is formally over space,
but can also be taken as the time average. The total momentum P inside the parallelepiped
is,

P = 〈p〉 V = Mc. (28)

The center of mass/energy of the wave inside the parallelepiped has z-coordinate,

zcm =

∫ z0+L

z0
zρ dz∫ z0+L

z0
ρ dz

=

∫ z0+L

z0
z cos2(kz − ωt) dz

L/2
=

1

L

∫ z0+L

z0

z[1 + cos 2(kz − ωt)] dz

= z0 +
L

2
+

sin 2(kz0 − ωt)

2k
, (29)

where z0(t) is the z-coordinate of the “left” end of the parallelepiped, so the velocity of the
center of mass/energy is,

vcm = v − cos 2(kz0 − ωt) c = v + [1 − 2 cos2(kz0 − ωt)] c. (30)

The velocity (30) of the center of mass/energy can exceed the speed of light, which indicates
that this quantity does not have great physical significance in the present case of a closed,
moving surface in the interior of an electromagnetic wave.

The boundary integral in eq. (26) is (for kL = 2nπ),

∮
boundary

(x − xcm) (p − ρvb) · dArea

= A ẑ

[
(z0 + L) −

(
z0 +

L

2
+

sin 2(kz0 − ωt)

2k

)][
E2

0

4πc
cos2[k(z0 + L) − ωt] − E2

0v

8πc2

]

−A ẑ

[
z0 −

(
z0 +

L

2
+

sin 2(kz0 − ωt)

2k

)] [
E2

0

4πc
cos2[kz0 − ωt] − E2

0v

8πc2

]

= M [2 cos2(kz0 − ωt) c− v]. (31)

Using the above expressions in eq. (26) we obtain,

Phidden = Mc − M{v + [1 − 2 cos2(kz0 − ωt)] c} −M [2 cos2(kz0 − ωt)c − v] = 0. (32)

This confirms that both forms of the new definition (6) of “hidden” momentum are con-
sistent with the “hidden” momentum vanishing for a plane electromagnetic wave in vacuum.
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4 Comments

An immediate consequence of the new definition (6) is that nonzero electromagnetic field
momentum in a bounded, static system is called “hidden” momentum in the frame where the
center of mass energy is at rest, in contrast to the narrow definition (5) which characterized
only the equal and opposite mechanical momentum as “hidden”. Also, in a more general
frame, the quantities M = U/c2 and vcm in the new definition (6) refer to a particular
subsystem, while in the earlier definition (5) they refer to the entire system.

Another consequence of the new definition (6) is that an isolated system, treated as a
whole, has zero total “hidden” momentum.25

If an isolated system is partitioned into two subsystems, we would expect their “hidden”
momenta to be equal and opposite, such that the total “hidden” momentum is zero. However,
it is not immediately obvious that the macroscopic integrals

∫
f̄0(x − xcm) dVol are equal

and opposite for the two subsystems.
The second form of definition (6) indicates that a subsystem can contain “hidden” mo-

mentum only if its interior exerts a force density −fμ on the rest of the system (such that the
time component f0 is nonzero); see also footnote 20. This implies that some other subsys-
tem coexists within the volume of the subsystem of interest. Any subsystem that is spatially
disjoint from all other subsystems will contain no “hidden” momentum.26

In contrast, if a system is partitioned into subsystems that can be characterized as “fields”
and “matter” which occupy the same volume, the interaction between the fields and matter
can be associated with “hidden” momentum.27,28,29 In most of these examples, the “hidden”
mechanical momentum is associated with moving charges, but in the example [60] (and its
variant in the Appendix to [98], the “hidden” mechanical momentum is associated with the
transfer of mass, without mechanical motion, from a battery to a resistor via the Poynting
vector.

4.1 Electromagnetic and Mechanical Subsystems

The principle examples of subsystems that contain “hidden” momentum will be electromag-
netic and mechanical subsystems with common volumes.

For an isolated, closed system with total stress-energy-momentum tensor T μν , the 4-
divergence of the latter is zero, ∂T μν/∂xν = 0. If the system contains two subsystems A

25The older definition (4) considered “hidden” momentum to be mechanical but not electromagnetic. An
isolated system can have nonzero, equal and opposite “hidden” mechanical and electromagnetic momenta.

26The usual partitioning of an all-mechanical system is into spatially disjoint subsystems, so these subsys-
tems do not contain “hidden” momentum according to definition (6). Examples [81, 82, 83, 85, 87, 100, 101]
illustrate this result.

27We might say that “hidden” momentum can only arise in a macroscopic field theory.
28Four classic examples of electromechanical systems that contain “hidden” momentum are a simple

[35], or a toroidal [31], current loop in a transverse electric field, a system with both electric and magnetic
dipole moments [51], and a moving capacitor [52]. For discussion by the author of these examples, see
[46, 68, 79, 84, 95, 96, 97].

29The discussion in secs. 17.9-12 of [31] fell short of identification of the “hidden” mechanical momentum
in the loop. More explicit identification of this momentum (prior to the historical introduction of the term
“hidden” momentum) was made in [33, 34], but without mention of [31].

10



and B which occupy the same volume, then fμ
A = ∂T μν

A /∂xν = −∂T μν
B /∂xν = −fμ

B, where
fμ

B is the 4-force density exerted by subsystem A on B. Hence, according to the last form
of the definition (6), subsystems A and B have equal and opposite “hidden” momenta.
In particular, if the entire system is partitioned into “electromagnetic” and “mechanical”
subsystems, we have that,

Phidden,EM = −Phidden,mech. (33)

For the electromagnetic subsystem the macroscopic electromagnetic energy-momentum-
stress tensor (secs. 32-33 of [43], sec. 12.10B of [59]) is, in a linear medium,30

Tμν
EM =

⎛
⎝ uEM cpEM

cpEM −T ij
EM

⎞
⎠ , (34)

where uEM is the electromagnetic field energy density, pEM is the electromagnetic momentum
density, and T ij

EM is the 3-dimensional (symmetric) electromagnetic stress tensor. If the
tensor (34) is independent of time (as, for example, in the rest frame of a medium with
static charge and steady current distributions), then the quantity f0 in eq. (6) is,

f0 =
∂T ν

∂xν
= c∇ · pEM, (35)

for the electromagnetic subsystem, and hence,31

Phidden,EM = −
∫

f0

c
(x − xcm) dVol = −

∫
x(∇ · pEM) dVol + xcm

∫
∇ · pEM dVol. (36)

The last integral in eq. (36) transforms into a surface integral at infinity that is negligible for
a system with bounded charge and current distributions. The term − ∫

x(∇ ·pEM) dVol can
be integrated by parts, with the resulting surface integral at infinity also being negligible,
such that,

Phidden,EM =

∫
pEM dVol = PEM. (37)

Then, together with eq. (33) we have that,

Phidden,EM = PEM = −Phidden,mech. (38)

For a “static” case, the “visible” mechanical momentum is zero in the rest frame of the
medium, and any mechanical momentum is “hidden”. that is,

Phidden,EM = PEM = −Phidden,mech = −Pmech, (39)

and the total momentum of the system is zero,

Ptotal = PEM + Pmech = 0. (40)

Thus, the definition (6) is consistent with concept of “hidden” momentum as discussed by
Shockley and others as explaining how/why the total momentum of an electromechanical
system “at rest” is zero.

30For a nonlinear medium, Minkowski’s stress tensor [22] is not symmetric, whereas Abraham’s [21] is.
31For a stationary system, it is convenient to define the center of mass to be at the origin, x|rmcm = 0, in

which case eq. (36) becomes eq. (7) of [56].
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4.1.1 The Abraham-Minkowski Debate

The result (40) holds for any (valid) form of the electromagnetic field momentum density
pEM and the associated stress-energy-momentum tensor Tμν

EM , so the present considerations
of “hidden” momentum cannot resolve the Abraham-Minkowski debate [94, 79]. That is,
if one accepts either the Abraham or the Minkowski form of the stress-energy-momentum
tensor, the definition (6) leads one to a computation of the “hidden” mechanical momentum
that is consistent with eqs. (39)-(40).32 One the other hand, one expects that mechanical
momentum, “hidden” or not, is uniquely specifiable for a given system, so that two different
values for the ‘hidden” mechanical momentum cannot both be correct.

Instead, by consideration of two examples [95, 96] that contain “hidden” momentum in
which the magnetic fields can be due to either convection currents or “permanent” magneti-
zation, computation (without use of “hidden” momentum) of forces when the magnetic field
goes to zero permits us to infer that neither the Abraham nor the Minkowski field momenta
are “correct”, and that even in systems with electric polarization P and magnetization M
the “field-only” forms (1)-(3) should be used.

4.1.2 Additional Remarks on Electromagnetic and Mechanical Subsystems

As noted in eq. (10) of [47], for a mechanical system that interacts with an electromagnetic
field described by the tensor Fμν (in an overall system that may be time dependent), the
4-force density on the mechanical subsystem due to the electromagnetic subsystem is the
Lorentz force,

fμ
mech (= ∂νT

μν
mech) = FμνJν =

(
J · E

c
, �E +

J

c
× B

)
, f0

mech =
J · E

c
, (41)

where the current density 4-vector is Jμ = (c�,−J). Thus the “hidden” momentum of the
mechanical subsystem is,33

Pmech
hidden = −

∫
J · E
c2

(
r − rmech

cm

)
dVol = −

∫
r
J · E
c2

dVol + rmech
cm

∫
J ·E
c2

dVol. (42)

The “hidden” momentum for the electromagnetic subsystem follows from,

f0
EM = ∂μT

0μ
EM, where T 0μ

EM = (uEM, cpEM) =

(
uEM,

S

c

)
, (43)

and S = (c/4π)E × B is the Poynting vector, assuming unit relative permittivity and per-
meability everywhere. Then,

f0
EM =

1

c

∂uEM

∂t
+

∇ · S
c

=
1

c

∂uEM

∂t
− 1

c

∂uEM

∂t
− J · E

c
= −J · E

c
, (44)

and,

PEM
hidden =

∫
J ·E
c2

(
r − rEM

cm

)
dVol =

∫
r
J ·E
c2

dVol − rEM
cm

∫
J · E
c2

dVol. (45)

32This conclusion appears to differ from that in [77].
33The form (42), taking rmech

cm = 0, is probably what is meant by the first equality in eq. (8) of [37], and
also appears in eq. (6) of [54].
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Thus,

PEM
hidden + Pmech

hidden = (rmech
cm − rEM

cm )

∫
J · E
c2

dVol. (46)

In general, rmech
cm does not equal rEM

cm , so the total “hidden” momentum vanishes only if∫
J · E dVol = 0.

4.1.3 Stationary Systems

For a stationary system, E = −∇V and ∇ · J = ∂jJj = 0, so,

− J · E = Jj ∂jV = ∂j(JjV ) − V ∂j Jj = ∂j(JjV ), (47)

and,

∫
J · E dVol = −

∫
∇ · (V J) dVol = −

∮
(V J) · dArea = 0, (48)

for any bounded charge density.
Hence, for stationary systems,

PEM
hidden + Pmech

hidden = 0 (stationary). (49)

We also note that,

− J · E ri = riJj ∂jV = ∂j(riJjV ) − V ∂j(riJj) = ∂j(riJjV ) − V Jj ∂jri − V ri ∂
j Jj

= ∂j(riJjV ) − V Ji, (50)

so,

PEM
hidden,i = −

∫
ri

J · E
c2

dVol = −
∫

V Ji

c2
dVol +

1

c2

∫
∂j(riJjV ) dVol (51)

The latter volume integral becomes a surface integral at infinity, so is zero for any bounded
current density. Then,

PEM
hidden = PEM =

∫
r
J · E
c2

dVol (stationary). (52)

which provides a fourth prescription, in addition to those of eq. (3) (see also Appendix B),
for computing the field momentum of a stationary system.

The electromagnetic momentum of a stationary system, which is equal and opposite
to the “hidden” mechanical momentum, is of order 1/c2, which is very small compared to
typical mechanical momenta. Only in isolated, stationary systems, for which Ptotal = 0, are
these tiny momenta relatively prominent.
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4.1.4 Quasistatic Systems

In nonstationary systems, the electromagnetic and “hidden” mechanical momentum can have
terms of order 1/c3 (and higher). For quasistatic systems with all velocities small compared
to c (and all accelerations small compared to c2/R where R is the characteristic size of
the system) these higher-order terms will be negligible, and it is a good approximation to
consider the electromagnetic and “hidden” mechanical momentum only at order 1/c2.

For a nonstationary system, E = −∇V − ∂A/∂ct where the vector potential A is of
order 1/c, and in general ∇ · J = ∂jJj �= 0, so,

− J · E = Jj ∂jV + Jj∂Aj/∂ct = ∂j(JjV ) − V ∂j Jj + O(1/c2). (53)

For those quasistatic systems where all velocities are much less than c and ∇ · J = 0 (which
excludes moving “circuits” and time-varying charge densities),∫

J · E dVol = −
∫

∇ · (V J) dVol = −
∮

(V J) · dArea = 0 + O(1/c2), (54)

for any bounded charge density.
Hence, for some quasistationary systems,

PEM
hidden + Pmech

hidden = 0 + O(1/c4) (quasistatic, all v � c, ∇ · J = 0). (55)

Systems for which eq. (55) holds (in the frame where the circuit elements are at rest) include
circuits with batteries, resistors, and inductors, but not capacitors. See [60, 67] for discussion
of two such examples.34

4.1.5 “Hidden” Angular Momentum in Quasistatic Systems

Equations (42) and (45) suggest that we identify the volume densities of “hidden” momentum
as,

pmech
hidden = −J · E

c2

(
r − rmech

cm

)
, pEM

hidden =
J · E
c2

(
r − rEM

cm

)
, (56)

Then, the density of “hidden” mechanical angular momentum for the mechanical subsystem
of is,35

lmech
hidden = r × pmech

hidden = −J · E
c2

r × (
r − rmech

cm

)
=

J · E
c2

r × rmech
cm

=
J · E
c2

(
r − rmech

cm

) × rmech
cm = rmech

cm × pmech
hidden. (57)

In this view, the total “hidden” mechanical angular momentum is,

Lmech
hidden =

∫
lmech
hidden dVol = rmech

cm ×
∫

pmech
hidden dVol = rmech

cm ×Pmech
hidden, (58)

34The quasistatic system of two slowly moving electric charges has nonzero field momentum, and this
momentum plus the “overt” mechanical momentum is constant in time, to order 1/c2 [26]. Here, ∇ · J �= 0,
and there is no “hidden” mechanical momentum.

35If we inferred from eq. (52) that the density of “hidden” angular momentum were
r ×±(J ·E) r/c2 = 0, there would be no “hidden” angular momentum in any system.
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where rmech
cm is the center of mass/energy of the mechanical subsystem.36,37,38 Similarly, the

total “hidden” electromagnetic angular momentum is,

LEM
hidden = rEM

cm × PEM
hidden. (60)

Although PEM
hidden ≈ −Pmech

hidden in quasistatic systems where ∇ · J = 0, in general rEM
cm �= rmech

cm

and LEM
hidden �= −Lmech

hidden. That is, there is no requirement that the total “hidden” angular
momentum be zero.39

While the field momentum (= “hidden” field momentum) of a quasistatic system can be computed using
any of four volume densities, it turns out that the field angular momentum can only be computed in general
using two of those densities, of which r× (E×B)/4πc is often considered to be “the” density of field angular
momentum,

LEM =
∫

r × E ×B
4πc

dVol =
∫

r× �A
c

dVol �=
∫

r × V J
c2

dVol �= rEM
cm × PEM = LEM

hidden. (61)

The equality of the first two forms in eq. (61) was first demonstrated in [33]. That these forms differ from∫
r × V J

c2 dVol is shown in Appendix B of [93]. The fourth form, LEM
hidden, equals the first two forms only for

the special case that the electric field is due to a single charge.

4.1.6 Other Alternative Expressions for “Hidden” Mechanical Momentum

As seen above, in stationary systems, and to a good approximation in quasistatic systems,

Phidden,mech = −Phidden,EM = −PEM. (62)

As discussed in eq. (3), in such systems the electromagnetic field momentum can be written
in (at least) four ways,

PEM =

∫
�A

c
dVol =

∫
E × B

4πc
dVol =

∫
V J

c2
dVol =

∫
J · E
c2

r dVol, (63)

where the potentials V and A are in the Coulomb gauge, so this gives us (at least) four
methods of computing the “hidden” mechanical momentum.40 However, can the integrands

36The result (58) is similar to that of eq. (26) of [49]. As the result is zero when measured about the center
of mass/energy of the mechanical subsystem, we could say that the “hidden” mechanical angular momentum
is “orbital” rather than “intrinsic”, where the latter is with respect to the center of mass/energy.

37The existence of nonzero “hidden” mechanical angular momentum when rmech
cm is not at the origin is

the key to the resolution of Mansuripur’s paradox [78].
38For example, the “hidden” mechanical angular momentum of a charge q of mass Mq at distance rq from

a point, Ampèrian magnetic dipole m of mass Mm, all at rest, is, about the location of moment m,

Lmech
hidden =

Mq

Mq + Mm
rq ×

(
m
c

× −qrq

r3
q

)
, as [41] Pmech

hidden = −PEM =
m ×Eq

c
. (59)

39For example, the “hidden” mechanical momentum of a charge q and a solenoid is essentially zero (if
mq � msolenoid), while the “hidden” field momentum is nonzero when the charge is not on the solenoid axis
[93]. See also [45].

40The definition (6) gives two more methods, although the second form of eq. (6) is the same as the fourth
form of eq. (63), as seen in secs. 4.1.2-3 above.
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of any of the four forms in eq. (62) be regarded as the physical density of the field momentum,
or the negative of the density of “hidden” mechanical momentum?

We consider that the physical density of electromagnetic field momentum is E×B/4πc,
so the negative of this cannot be the density of “hidden” mechanical momentum. The latter
is a form of mechanical momentum, and so is associated with moving mechanical objects.
In an electromechanical system, the relevant objects are the moving charges that constitute
the current density J. So, it is possible that the integrands of the third or fourth forms of
eq. (63 correspond to the density of “hidden” mechanical momentum.

In a particular example [35, 73, 84] of an idealized, rectangular current loop in a uni-
form electric field perpendicular, as sketched below (from [73]), the “hidden” mechanical
momentum is identified as the difference between the relativistic mechanical momentum of
the moving charges in the top and bottom segments of the current loop. Since J · E = 0
for these segments, we conclude that the density of “hidden” mechanical momentum is not
−(J · E)r/c2.

The remaining candidate for the density of “hidden” mechanical momentum in a (quasi)stationary
electromechanical system is −V J/c2 (for V in the Coulomb gauge). As discussed in sec. III
of [73], this identification is consistent with the above example.

However, in a more subtle example [60], sketched below, the velocity of the moving
charges is the same throughout the circuit, so while V J is nonzero except on the outer,
perfect conductor, the mechanical momentum of these charges is not “hidden”, and the
total mechanical momentum is zero (in the frame of the circuit).

The center of mechanical mass/energy is moving to the right in this example (in the rest
frame of the circuit), because the battery transfers energy to the resistor.41 As such, the
“hidden” mechanical momentum is related by the first form of eq. (6),

Phidden,mech = Pmech − Mvcm,mech = −Mvcm,mech, (64)

41That is, the system is not “at rest” in the rest frame of the circuit. If we define the lab frame to be
that in which the center of mass/energy of the system is zero, then the circuit is moving to the left in the
lab frame, if there are no “external” forces on the circuit.
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which points to the left. In this example, there is no density of “hidden” mechanical momen-
tum,42 which illustrates that the concept of “hidden” momentum can be rather abstract.

4.2 “Hidden” Momentum and Relativity

“Hidden” momentum is an effect of order 1/c2, and as such is often described as “rela-
tivistic”.43 Yet, most discussions of “hidden” momentum are made only in the frame of an
isolated system in which the center of mass/energy is at rest.44 The definition (6) applies
in any inertial frame, but it is not obvious whether the “hidden” momentum 3-vector is the
spatial part of a 4-vector (or 4-tensor).

A hint of the compatibility of “hidden” momentum and relativity is given in Appendix C;
the “hidden” field momentum for bounded, quasistatic systems can be written in the form,

PEM
hidden =

∫
r
J · E
c2

dVol =

∫
�A

c
dVol =

∑ qA

c
(quasistatic), (65)

and qA is the spatial part of the 4-vector qAμ = q(V,A).

4.3 Velocity of the Center of Mass vs. That of the Centroid

A pair of spinning neutron stars can contain “hidden” momentum in its gravitational field,
and in the matter of the stars [76]. However, in an all-mechanical analog of this system as
a linked pair of gyrostats, neither of the latter contains “hidden” momentum according to
definition (6). See also [87].

This example does contain a very curious feature, that the position of the center of
mass/energy of a spinning object in the lab frame is different from that of the centroid, where
the latter (näıvely the geometric center) is defined as the Lorentz transformation to the lab
frame of the center of mass/energy in the inertial frame where the center of mass/energy is
at rest (but the object is spinning). See also [86, 88].

A possible variant of the definition (6) of “hidden” momentum is to replace vcm by
vcentroid.

This would have the appeal of assigning a “hidden” momentum to the interesting motion
in the lab frame of the neutron-star (or gyrostat-pair) system, where the combined centroid
of the two spinning objects oscillates about the center of mass/energy (which latter is at
rest in the lab frame) [76, 87]. However, this motion is not actually associated with any net
momentum (which is zero in the lab frame).

Hence, we do not advocate use of this variant, and continue to favor the definition (6)
for “hidden” momentum.

42The relation Phidden = − ∫
f0(x − xcm) dVol/c is not an integral of a momentum density.

43See, for example, the final bullet on p. 832 of [73].
44An exception is [53], as noted in sec. 2.
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Appendices

A Momentum of a System at “Rest”

The mechanical behavior of a macroscopic system can be described with the aid of the
(symmetric) stress-energy-momentum tensor T μν of the system. The total energy-momentum
4-vector of the system is given by,

Uμ = (Utotal, P
i
total c) =

∫
T 0μ dVol. (66)

As first noted by Abraham [16], at the microscopic level the electromagnetic parts of T μν

are,

T 00
EM =

E2 + B2

8π
= uEM , (67)

T 0i
EM =

Si

c
= pi

EM c, (68)

T ij
EM =

EiEj + BiBj

4π
− δij E

2 + B2

8π
, (69)

in terms of the microscopic fields E and B. In particular, the density of electromagnetic
momentum stored in the electromagnetic field is,

pEM =
S

c2
=

E × B

4πc
. (70)

The macroscopic stress tensor T μν also includes the “mechanical” stresses within the
system, which are actually electromagnetic at the atomic level. The form (69) still holds in
terms of the macroscopic fields E and B in media where ε = 1 = μ such that strictive effects
can be neglected. The macroscopic stresses T ij are related the volume density f of force on
the system according to,

f i =
∂T ij

∂xj
. (71)

The stress tensor T μν obeys the conservation law,

∂T μν

∂xμ
= 0, (72)

with xμ = (ct,x) and xμ = (ct,−x). Once consequence of this is that the total momentum
is constant for an isolated, spatially bounded system, i.e.,∫

∂T μi

∂xμ
= 0 =

∂

∂ct

∫
T 0i dVol −

∫
∂T ji

∂xj
dVol =

dP i
total

dt
−

∫
T ji dAreaj =

dP i
total

dt
. (73)

A related result is that the total (relativistic) momentum Ptotal of an isolated system is
proportional to the velocity vU = dxU/dt of the center of mass/energy of the system [39],

Ptotal =
Utotal

c2
vU =

Utotal

c2

dxU

dt
, (74)
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where,

Utotal =

∫
T 00 dVol, (75)

P i
total =

1

c

∫
T 0i dVol, (76)

xU =
1

Utotal

∫
T 00 x dVol. (77)

That is, the total momentum of an isolated system is zero in that (inertial) frame in which
the center of mass/energy is at rest.

B Electromagnetic Momentum to Order 1/c2

See, for example, [75] for a discussion of alternative forms of electromagnetic energy, mo-
mentum and angular momentum for fields with arbitrary time dependence.

Since the magnetic field B is always of order 1/c (or higher), we can calculate the elec-
tromagnetic momentum (2) to order 1/c2 using approximations to the electric field at zeroth
order, i.e., E ≈ −∇V (C) (the Coulomb electric field), and to the magnetic field at order 1/c,
i.e., ∇×B ≈ 4πJ/c with the neglect of the displacement current. Then, as argued by Furry
[41],

PEM =

∫
E × B

4πc
dVol ≈ −

∫ ∇V (C) × B

4πc
dVol

=

∫
V (C)∇× B

4πc
dVol −

∫ ∇ × V (C)B

4πc
dVol

=

∫
V (C)J

c2
dVol −

∮
dArea × V (C)B

4πc
=

∫
V (C)J

c2
dVol, (78)

whenever the charges and currents are contained within a finite volume.
The following argument is due to Vladimir Hnizdo.
We can avoid use of the current density J and instead consider the vector potential A(C)

in the Coulomb gauge, which has zero divergence,

B = ∇× A(C), ∇ · A(C) = 0. (79)

In addition to well-known vector calculus relations, it is useful to define a combined
operation

∇ · ab ≡ (∇ · a)b + (a · ∇)b = (∇ · bxa) x̂ + (∇ · bya) ŷ + (∇ · bza) ẑ. (80)

Then,

E × B = E × (∇ × A(C)) = ∇(A(C) · E)− (A(C) ·∇)E − (E · ∇)A(C) −A(C) × (∇× E)

= (∇ · E)A(C) + ∇(A(C) · E)

−[(∇ · E)A(C) + (A(C) · ∇)E] − [(∇ · A(C))E + (E · ∇)A(C)]

= 4πρA(C) + ∇(A(C) · E) −∇ · EA(C) − ∇ · A(C)E, (81)
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so that,

PEM =

∫
E ×B

4πc
dVol

=

∫
ρA(C)

c
dVol +

∮
(A(C) ·E) dArea −

∮
E(A(C) · dArea) −

∮
A(C)(E · dArea)

≈
∫

ρA(C)

c
dVol. (82)

The surface integrals in eq. (82) are negligible when the charges and currents that create
the electric field E and the vector potential A(C) lie within a finite volume that is small
compared to the volume of integration, and when radiation can be neglected. As previously
noted, the electromagnetic momentum can be calculated to order 1/c2 with the neglect of
the displacement current, which implies neglect of radiation, and justifies the approximation
in eq. (82).

C Electromagnetic Potential Momentum of a Charge

Faraday anticipated [3, 4] and Maxwell noted [7] that a charge e in a vector potential A has
a kind of electromagnetic potential momentum,45

PEM,potential =
eA

c
, (83)

in addition to its mechanical momentum, if any.46 That is, if the vector potential drops to
zero from its initial value A, the charge experiences a “kick”,

ΔPmech =

∫
F dt =

∫
eE dt = −e

c

∫
∂A

∂t
dt =

eA

c
= PEM,potential,initial . (84)

Since the vector potential is of order 1/c, the potential momentum (83) is of order 1/c2, i.e.,
very small for “nonrelativistic” systems.

The electromagnetic potential momentum (83) is the electromagnetic part of the canon-
ical momentum,

Pcanonical =
mv√

1 − v2/c2
+

eA

c
, (85)

of a charge e that interacts with an electromagnetic field, as described by the Lagrangian,

L = −mc2
√

1 − v2/c2 − eφ + e
v

c
· A. (86)

See, for example, sec. 16 of [43].
The electromagnetic potential momentum (83) is nonzero for a charge at rest, if there

are charges in motion elsewhere in the system that create a nonzero vector potential at the

45The concept of potential momentum is reviewed in Sec. III of [74].
46The momentum (83) is actually gauge invariant if one writes it as eArot/c, where Arot is the rotational

part of the vector potential, i.e., ∇ · Arot = 0. See, for example, sec. 2.3 of [75].
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location of the test charge. The momentum (83), which was historically the first contribution
to momentum to be identified at order 1/c2 (since A ∝ 1/c), could therefore be described
as “hidden”. However, this is not commonly done.

The term “electromagnetic potential momentum” is also not common [44, 55, 71, 89].
The electromagnetic potential momentum eA/c can be combined with the electrical

potential energy,
UEM,potential = eV, (87)

where V is the electric scalar potential at the position of the charge, to form a potential-
energy-momentum 4-vector,

Uμ
EM,potential = (UEM,potential,PEM,potential c) = e(V,A) = eAμ. (88)

where,
Aμ = (V,A), (89)

is the electromagnetic potential 4-vector.
However, in (quasi)static cases like those considered in this note, the quantity

∫
ρA dVol/c

is equal and opposite to the “hidden” mechanical momentum of the system, and if the vec-
tor potential goes to zero, so does the “hidden” mechanical momentum, while the “overt”
mechanical momentum of the system remains unchanged. There is no conversion of a “po-
tential” momentum into an “overt” mechanical momentum, so the designation “potential
momentum” is not very apt.47
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Phys. 20, 398, 422 (1822), http://kirkmcd.princeton.edu/examples/EM/ampere_acp_20_398_22.pdf

[2] Discussion in English of Ampère’s attitudes on the relation between magnetism and me-
chanics is given in R.A.R. Tricker, Early Electrodynamics, the First Law of Circulation
(Pergamon, 1965), http://kirkmcd.princeton.edu/examples/EM/tricker_early_em.pdf

O. Darrigol, Electrodynamics from Ampère to Einstein (Oxford U. Press, 2000), http:

//kirkmcd.princeton.edu/examples/EM/darrigol_em_00.pdf
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