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1 Problem

This is a collection of related problems concerning calculation of the electric potential in
structures whose unit cell is a 2-dimensional, hollow, rectangular prism with a collection
wire at its center, as find application in gas-filled detectors of high-energy charged particles.

1.1 Basic Iarocci Tube

An Iarocci tube [1] is a low-cost descendent of a Geiger counter whose walls form a rectangular
prism, with a wire along its center. In the basic configuration, the walls are conducting, and
grounded, as shown in the left of Fig 1.

Figure 1: An Iarocci tube is a hollow rectangular prism of active area a × b
with a wire running down the center. The wall of the tube may be a grounded,
conducting box-channel (left), or a grounded, conducting U-channel with a
dielectric lid (right).

Deduce the electrostatic potential φ(x, y) inside the Iarocci tube supposing the wire
carries charge q per unit length.

The potential has a logarithmic divergence at the wire, so we specify the charge per unit
length on the wire rather than its potential. Then, the presence of (nonsingular) surfaces at
a specified potential permits a simple series expansion at points not on the wire. A physical
device with this geometry will have a wire of nonzero radius r0. Sum the series for points
near the wire to show that potential of the wire is approximately 2q ln(b/2πr0).
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1.2 Iarocci Tube with a Dielectric Lid

Another form of an Iarocci tube is based on a ground, conducting U-channel with a dielectric
lid, as shown in the right of Fig. 1. This is not enough information to obtain a unique solution
for the potential. We must know either the potential or its normal derivative everywhere
on the boundary, according to a theorem of Green. During operation the dielectric surface
becomes charge up by positive ions until the electric field just inside the lid is parallel to
its surface, which implies that the same tangential electric field exists just outside the lid as
well. Such an electric field configuration would hold in a structure consisting of the Iarocci
tube as described plus its mirror image in the plane of the lid, i.e., a grounded, conduction
prism of size a × 2b with two wires.

1.3 Multiwire Proportional Chamber (“Electrodeless”

Drift Chamber)

Closely related to an Iarocci tube is the so-called “electrodeless” drift chamber, shown in
Fig. 2. Typically a � b, and both the upper and lower surfaces are dielectric. Find the of
the potential assuming that the electric field is parallel to the dielectric surfaces, and that
the wire carries charge q per unit length.

Figure 2: An “electrodeless” drift chamber is a hollow rectangular prism of
active area a × b with two opposing faces that are conductors, two faces that
are dielectric, and a wire running down the center. This is also a unit cell of
a multiwire proportional chamber with planar cathodes.

If the unit cell shown in Fig. 2 is replicated so as to form a stack of cells in y with period
b, we have in effect that case of a pair of grounded conducting planes distance a apart with a
grid of wires of spacing b midway between. This is the geometry of a multiwire proportional
chamber (MWPC).

2



1.4 MWPC with Alternating Anode and Cathode Wires

Crosstalk between transient signals of charge collected on the anode wires of a multiwire
proportional chamber (the central wire in Fig. 2) can be suppressed by the addition of
cathode wires between the anode wires, as shown in Fig. 3. Typically, these additional
cathode wires would be grounded.

Figure 3: The unit cell of a multiwire proportional chamber with a plane of
alternating anode and grounded cathode wires.

Recall that we cannot define the potential of a 1-dimensional wire, so we cannot analyze
the problem where the anode wires are grounded. We can, however, make an analysis using 1-
dimensional wires if the charges on the wires are given. Find the electric potential supposing
the charge on each of the anode wires is −εq, where in practice ε would be determined by
requiring the anode wire of finite radius to be at zero potential.

If ε ≈ (2/π) tan−1(a/b), then the field pattern over most of the cell will resemble that of
an Iarocci tube with grounded walls.

1.5 Array of Cells with One Anode and One Cathode Wire

Some particle detectors are in the form of an extended array of cells defined only by anode
and cathode wires. A simple rectangular array is shown in Fig. 4, where the unit cell has
size 2a × 2b and contains one anode and one cathode wire. In the limit of an infinite array,
no electric field lines would cross any cell boundary.

Give a series expansion for the potential φ(x, y) supposing that the anode and cathode
wires carry charge ±q per unit length.

1.6 Array of Cells with 1 Anode and 3 Cathode Wires

To make the electric field in the cells of a rectangular array approach more closely that of a
basic Iarocci tube, additional cathode wires can be added, as shown in Fig. 5. All field lines
that leave an anode wire should terminate on cathode wires of the same cell, so the sum of
the charges per unit length on the cathode wires must be equal and opposite to that on the
anode wire. Roughly, if there are n cathode wires per unit cell, each will carry charge −q/n
per unit length, where q is the charge per unit length on the anode wire.
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Figure 4: A region of a particle detector whose rectangular unit cell of size
2a × 2b contains one anode wire and one cathode wire that carry charge ±q
per unit length.

Figure 5: A region of a particle detector whose rectangular unit cell of size
2a × 2b contains 1 anode wire and 3 cathode wires.

In practice, the cathode wires typically have the same potential, rather than the same
charge. For a calculation using 1-dimensional wires we must, however, specify the charges
rather than the potentials. Give a series expansion for the potential φ(x, y) supposing that
the anode wires carry charge q per unit length and the three cathode wires carry charge
−ε1q, −ε2q and −ε3q, where ε1 + ε2 + ε3 = 1.
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2 Solution

Some additional aspects of this problem are considered in [2].

2.1 Basic Iarocci Tube

The case of a rectangular Iarocci tube is closely related to the very simple case of a structure
with a wire along the axis of a grounded, conducting cylinder. In the latter case, the
equipotentials are circles centered on the wire, and the electric field lines radiate from the
wire. This pattern holds in the rectangular Iarocci tube for points close to the wire, but near
the walls the field lines must bend until they are normally incident on the walls.

To use techniques for solving Laplace’s equation, ∇2φ = 0, for the potential φ, we
subdivide the cells into rectangular regions that have no charge in their interior. We analyze
the cells in a rectangular coordinate system with origin at the center of a cell (except in
sec. 2.2).

2.1.1 Wire at Center of Cell

For the basic Iarocci tube shown on the left of Fig. 1, we solve separately in the regions
x < 0 and x > 0, and match solutions at the “boundary” x = 0. In each region, we know
the potential on three of the four bounding surfaces, and we know the charge distribution
σ ∝ ∂φ/∂n on the fourth,

φ(x,−b/2) = φ(x, b/2) = φ(−a/2, y) = φ(a/2, y) = 0,
∂φ(0+, y)

∂x
= −2πqδ(y), (1)

in Gaussian units, where the symmetry of the potential and of Ex about x = 0 implies that
Ex(−ε, y) = −Ex(ε, y) = ∂φ(ε, y)/∂x = −2πσ(0, y) = −2πqδ(y).

A suitable form of the solution to Laplace’s equation for a potential that vanishes on the
outer boundaries and is symmetric in both x and y is,

φ(x, y) =
∑

n

An sinh kn(a/2 − |x|) cos kny. (2)

The boundary condition at y = ±b/2 requires that cos knb/2 = 0, and hence that kn =
(2n + 1)π/b. The boundary condition at x = 0 can now be written as,

− 2πqδ(y) =
∂φ(0+, y)

∂x
= −

∑
n

(2n + 1)π

b
An cosh

(2n + 1)πa

2b
cos

(2n + 1)πy

b
. (3)

On multiplying eq. (3) by sinnπy/b and integrating from 0 to b we find that,

An =
4q

(2n + 1) cosh (2n+1)πa
2b

. (4)

Hence, the potential for a basic Iarocci tube with a wire at its center can be written as,

φ(x, y) = 4q
∑

n

sinh (2n+1)π(a/2−|x|)
b

(2n + 1) cosh (2n+1)πa
2b

cos
(2n + 1)πy

b
(wire, origin at center)
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= 4q
∑

n

tanh (2n+1)πa
2b

cosh (2n+1)π|x|
b

− sinh (2n+1)π|x|
b

(2n + 1)
cos

(2n + 1)πy

b
. (5)

The potential at the origin diverges. But, of course, a physical realization of an Iarocci
tube involves a wire of finite radius r. We can estimate the potential at the surface of the
wire at position (x, y), where x2 + y2 = r2 � a, b, using the second form of eq. (5),

φwire = φ(x, y) ≈ 4qRe
∑
n=0

cosh (2n+1)πx
b

− sinh (2n+1)πx
b

2n + 1
e(2n+1)πiy/b

= 4qRe
∑
n=0

e−(2n+1)πx/be(2n+1)πiy/b

2n + 1
= 4qRe

∑
n=1

[
eπ(−|x|+iy)/b

]2n+1

2n + 1

= 2qRe ln
1 + eπ(−|x|+iy)/b

1 − eπ(−|x|+iy)/b
= 2qRe ln

sinh π|x|
b

+ i sin πy
b

cosh π|x|
b

− cos πy
b

. (6)

Note that the approximation in line 1 of eq. (6) is “exact” in the limit that a � b, i.e., in
the case of a wire halfway between a pair of grounded conducting planes.

Then, writing ln
[(

sinh π|x|
b

+ i sin πy
b

)
/
(
cosh π|x|

b
− cos πy

b

)]
= u + iv we have,

eu+iv = eu cos v + ieu sin v = 1 − e−2π(x−iy)/a =
sinh π|x|

b
+ i sin πy

b

cosh π|x|
b

− cos πy
b

(7)

e2u =
sinh2 π|x|

b
+ sin2 πy

b(
cosh π|x|

b
− cos πy

b

)2 =
cosh π|x|

b
+ cos πy

b

cosh π|x|
b

− cos πy
b

≈ 2
1
2
[(πx

b
)2 + (πy

b
)2]

=

(
2b

πr0

)2

, (8)

u ≈ ln
2b

πr0
, (9)

and we finally have,

Vwire ≈ 2q ln
2b

πr0

= 2q ln
0.64b

r0

. (10)

This is consistent with the general argument that if a wire of radius r carries charge q per
unit length, the electric field near the wire will have strength E ≈ 2q/r. So if the wire is
surrounded by a grounded conductor of characteristic size s, the potential on the wire will
be φwire ≈

∫ s

r
Edr ≈ 2q ln(s/r).

The image method can be used to generate another solution to this problem. A doubly
infinite set of charges (−1)m+nq at positions (ma, nb), where m and n are any integer (positive
or negative), is consistent with all four bounding planes of the box-channel being at ground
potential. Hence, we can write,

φ(x, y) = 2q
∑
m

∑
n

(−1)m+n ln
1√

(x− ma)2 + (y − nb)2
+ C

= −q
∑
m

∑
n

(−1)m+n ln
[
(x −ma)2 + (y − nb)2

]
+ C. (11)
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We require that the potential be zero on the boundary, which leads to an infinite set of
representations of constant C . For example, forcing V (a/2, b/2) = 0, we can write,

V (x, y) = −q
∑
m

∑
n

(−1)m+n ln
(m − x/a)2 + (n − y/b)2

(m − 1/2)2 + (n − 1/2)2
. (12)

For (x, y) near the origin, we can suppose that the series is dominated by the term with
m = n = 0, which implies that φ ≈ −q ln[2(x2/a2 + y2/b2)]. In this approximation, the
equipotentials are ellipsoidal cylinders, rather than circular cylinders as is to be expected.
When a = b, we obtain φ ≈ 2q ln(b/

√
2r) = 2q ln(0.71b/r), which is very close to eq. (10).

2.1.2 Wire at Arbitrary Position

If the wire were not at the center of the Iarocci tube, but at an aribtrary position (x0, y0),
then the matching condition at the plane x = x0 would be,

∂φ(x0,−, y)

∂x
− ∂φ(x0,+, y)

∂x
= 4πqδ(y − y0). (13)

A suitable expansion for the potential that satisfies the other boundary conditions of (1) and
which is continuous at the plane x = x0 is,

φ(x < x0, y) =
∑

n

An sinh
(2n + 1)π(a/2 + x)

b
cos

(2n + 1)πy

b
, (14)

φ(x > x0, y) =
∑

n

An

sinh (2n+1)π(a/2+x0)
b

sinh (2n+1)π(a/2−x0)
b

sinh
(2n + 1)π(a/2 − x)

b
cos

(2n + 1)πy

b
.(15)

The Fourier coefficients An are readily re-evaluated using eq. (13), and the series expansion
for the potential is,

φ(x < x0, y) = 8q
∑

n

sinh (2n+1)π(a/2−x0)
b

cos (2n+1)πy0

b

sinh (2n+1)πa
b

sinh
(2n + 1)π(a/2 + x)

b
cos

(2n + 1)πy

b
.

(16)

2.2 Iarocci Tube with Electric Field Parallel to a Dielectric Lid

This configuration does not have symmetry in the y direction, so it proves simpler to use
a coordinate system with its origin in, say, the lower left corner of the cell, as shown on
the right of Fig. 1. The boundary conditions, assuming that no field lines cross the surface
y = b, are,

φ(0, y) = φ(a, y) = φ(x, 0) = 0,
∂φ(x, b)

∂y
= 0,

∂φ(a/2, y)

∂x
= 2πqδ(y − b/2), (17)

in Gaussian units, where the symmetry of the potential and of Ex about x = a/2 implies
that Ex(a/2 − ε, y) = −Ex(a/2 + ε, y) = −2πσ(a/2, y) = −2πqδ(y − b/2).
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A suitable form of the solution to Laplace’s equation for a potential that vanishes at
x = 0 and y = 0 is,

φ(x, y) =
∑

n

An sinh knx sin kny. (18)

The boundary condition at y = b requires that cos knb = 0, and hence that kn = (2n+1)π/2b.
The boundary condition at x = a/2 can now be written as,

2πqδ(y − b/2) =
∂φ(a/2, y)

∂x
=

∑
n

(2n + 1)π

2b
An cosh

(2n + 1)πa

4b
sin

(2n + 1)πy

2b
. (19)

On multiplying eq. (19) by sin(2n + 1)πy/2b and integrating from 0 to b, we find that,

An =
4q sin (2n+1)π

4

(2n + 1) cosh (2n+1)πa
4b

. (20)

The potential is therefore given by,

φ(x, y) = 4q
∑

n

sin (2n+1)π
4

2n + 1

sinh (2n+1)πx
2b

cosh (2n+1)πa
4b

sin
(2n + 1)πy

2b
. (21)

Equipotentials and field lines based on eq. (21) are shown in Fig. 6.

Figure 6: The electric potential (left) and field lines (right) as calculated for
the geometry of an Iarocci tube using the computer program GARFIELD [3].

2.3 “Electrodeless” Drift Chamber (MWPC)

2.3.1 Wire at the Center of a Cell

We analyze the cell, shown in Fig. 2, in a coordinate system with its origin on the wire. The
boundary conditions on the outer surfaces are,

φ(−a/2, y) = φ(a/2, y) = 0,
∂φ(x,−b/2)

∂y
=

∂φ(x, b/2)

∂y
= 0, (22)
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assuming that no electric field lines cross the surfaces y = ±b/2. We consider the cell to be
divided into two regions, x < 0 and x > 0. The matching condition on the plane x = 0 is,

∂φ(0+, y)

∂x
= −2πqδ(y), (23)

The boundary conditions (22) on the outer surfaces of the cell indicate that a suitable
series expansion is,

φ(x, y) = A0(a/2 − |x|) +
∞∑

n=1

An sinh
2nπ(a/2 − |x|)

b
cos

2nπy

b
. (24)

Using the matching condition (23) at x = 0 we find the coefficient An to be,

A0 =
2πq

b
, An =

2q

n cosh nπa
b

, (25)

Hence, the potential can be written as,

φ(x, y) =
πqa

b
− 2πq |x|

b
+ 2q

∞∑
n=1

1

n

sinh 2nπ(a/2−|x|)
b

cosh nπa
b

cos
2nπy

b
(origin at the wire). (26)

For a � b, eq. (26) simplifies to,

φ(x, y) ≈ −2πq |x|
b

+ 2q
∞∑

n=1

1

n
e−2nπ|x|/b cos

2nπy

b
(origin at the wire), (27)

neglecting the constant term πqa/b, which then agrees with the known solution [4].
Except near x = 0, the exponential terms in eqs. (26) and (27) are small. So, over most

of the cell the potential varies linearly with x, and the electric field is parallel to the x axis.
The field strength is ±2πq/b, as if the charge q were uniformly distributed over the plane
(x = 0, |y| < b/2). For x ≈ 0, y ≈ 0 the equipotentials become cylinders around the wire,
as shown in Fig. 7. This is, of course, the desirable field configuration for a drift chamber.

For a point (x, y) on the wire of radius r =
√

x2 + y2 � a, b, an argument as given in
eqs. (6)-(10) indicates that the sum in eq. (26) is approximately 2q ln(b/2πr). Hence, the
potential on the wire is,

φwire ≈
πqa

b
+ 2q ln

b

2πr
. (28)

The first term of this is just the “uniform” electric field Ex = 2πq/b multiplied by the
distance a/2 between the wire and a ground plane. The second term is the same as the
potential for a wire on an isolated grid [4].

Equation (27) can also be written in closed form,

φ(x, y) = −q ln

[
2

(
cosh

2πx

a
− cos

2πy

a

)]
, (29)

as can be deduced by the use of functions of a complex variable [5].
Apparently, the potential (26) can be expressed in “closed form” using Jacobian elliptic

functions [6, 7], although it is not clear this has much practical advantage.
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Figure 7: The electric potential (top) and field lines (bottom)as calculated for
the geometry of an “electrodeless” drift chamber using the computer program
GARFIELD [3].

2.3.2 Wires at Arbitrary Positions

The wires in a multiwire proportional chamber may not all be at the centers of their cells,
due to “errors” in fabrication. The method used to find the potential (26) is not appropriate
for this case, in that the boundary conditions (23) are satisfied only if the “error” in the
placement of one wire is replicated in the placement of the other wires as well.

We recall that solutions to Laplace’s equation in rectangular coordinates in two dimen-
sions can have oscillatory functions in one coordinate and exponential functions in the one.
Let us now consider solutions that are exponential is x and oscillatory in y.

We first analyze the case of a single wire of charge λ0 (per unit length) at position (x0, y0).
Then, the potential from an arbitray set of wires can be built up from this result, supposing
that we know the charges, rather than the potentials on the wires.

We begin the analysis in a coordinate system with the grounded planes at x = 0, a, and
build up solutions in the two regions y < y0 and y > y0. The boundary conditions are now,

φ(0, y) = φ(a, y) = φ(x,±∞) = 0,
∂φ(x, y0,−)

∂y
− ∂φ(x, y0,+)

∂y
= 4πq0δ(x − x0). (30)

An expansion of the potential that satisfies the first three conditions of (30), and is continuous
at y = y0, is given by,

φ(x, y) =
∞∑

n=1

An sin
nπx

a
e−nπ|y−y0 |/a. (31)

Using the fourth condition of of (30) we find An = 4(q0/n) sin nπx0/a, so the potential due
to a single wire is,

φ(x, y) = 4q0

∞∑
n=1

1

n
sin

nπx0

a
sin

nπx

a
e−nπ|y−y0 |/a

10



= 2q0

∞∑
n=1

1

n

[
cos

nπ(x− x0)

a
− cos

nπ(x + x0)

a

]
e−nπ|y−y0 |/a

= 2q0 Re
∞∑

n=1

1

n

[
einπ(x−x0)/a − einπ(x+x0)/a

]
e−nπ|y−y0 |/a

= q0

[
eπ|y−y0 |/a − cos π(x−x0)

a

cosh π|y−y0 |
a

− cos π(x−x0)
a

− eπ|y−y0 |/a − cos π(x+x0)
a

cosh π|y−y0 |
a

− cos π(x+x0)
a

]

= 2q0

sin πx0

a
sin πx

a
sinh π|y−y0|

a

cosh2 π|y−y0 |
a

− 2 cos πx0

a
cos πx

a
cosh π|y−y0 |

a
+ cos2 πx0

a
+ cos2 πx

a
− 1

. (32)

We can now shift the origin in x from being on the left grounded plate to being on the
midplane of the detector by replacing x by x + a/2 (and x0 by x0 + a/2) in eq. (32). This
implies simply that sin → cos and cos → − sin,

φ(x, y) = 2q0

cos πx0

a
cos πx

a
sinh π|y−y0 |

a

cosh2 π|y−y0 |
a

− 2 sin πx0

a
sin πx

a
cosh π|y−y0 |

a
+ sin2 πx0

a
+ sin2 πx

a
− 1

. (33)

The potential due to a set of wires at (xi, yi) carrying charges λi can therefore be written,

V (x, y) = 2
∑

i

qi

cos πx0

a
cos πx

a
sinh π|y−yi|

a

cosh2 π|y−yi|
a

− 2 sin πxi

a
sin πx

a
cosh π|y−yi |

a
+ sin2 πxi

a
+ sin2 πx

a
− 1

. (34)

For a single wire midway between the two grounded planes, (x0, y0) = (0, y0), the potential
(32) becomes,

φ(x, y) = 2q0

cos πx
a

sinh π|y−y0 |
a

cosh2 π|y−y0 |
a

− cos2 πx
a

. (35)

Hence, the potential due to a regular grid of wires at x = a/2, y = nb, each carrying charge
q, is

φ(x, y) = 2q
∞∑

n=−∞

cos πx
a

sinh π|y−nb|
a

cosh2 π|y−nb|
a

− cos2 πx
a

(origin at a wire). (36)

This provides an alternative expansion to eq. (26) for the case of an ideal multiwire propor-
tional chamber.

2.4 MWPC with Alternating Anode and Cathode Wires

This problem is the same as that of the previous section, with the addition of cathode wires
at (0,±b/2), as shown in Fig, 3. These wires will carry charge of opposite sign to that on
the anode wire, say −εq. Since only half the charge on these cathode wire contributes to the
field inside a particular cell, we can write the matching condition at the plane x = 0 as,

∂φ(0+, y)

∂x
= −2πqδ(y) + πεqδ(y − b/2) + πεqδ(y + b/2). (37)
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The potential is again symmetric in both x and y, so we can again use the series expansion
(24). The boundary condition (37) implies that the Fourier coefficients are,

A0 =
2πq(1 − ε)

b
, An =

2q[1 − (−1)nε]

n cosh nπa
b

, (38)

which again vanish for odd n. Hence, we replace n by 2n in eqs. (24) and (38) and sum over
all n to write the potential as,

φ(x, y) =
2πq(1 − ε)(a/2 − |x|)

b
+ 2q

∞∑
n=1

[1 − (−1)nε]

n

sinh 2nπ(a/2−|x|)
b

cosh nπa
b

cos
2nπy

b
. (39)

The coefficient ε is determined by the requirement that the potential on the cathode wires
be zero,

φ(0,±b/2) = 0 =
πq(1 − ε)a

b
+ 2q

∞∑
n=1

[(−1)n − ε]

n
tanh

nπa

b
. (40)

2.5 Array of Cells with One Anode and One Cathode Wire

The charge distribution in this problem is specified, so we can use the formal expression

φ(x, y) =

∫
ρ

r
dVol (41)

to evaluate the potential. The anode wires are located at (x, y) = ((2m + 1)a, (2n + 1)b),
where integers m and n take on both positive and negative values. The cathode wires are at
(x, y) = (2ma, 2nb). The potential at a point that is at distance r from a wire that carries
charge q per unit length is −2q ln r, so the potential of the wire array of Fig. 4 is,

φ(x, y) = 2q
∑
m,n

(
ln

√
(x− 2ma)2 + (y − 2nb)2 − ln

√
(x− (2m + 1)a)2 + (y − (2n + 1)b)2

)

= q
∑
m,n

ln
(x − 2ma)2 + (y − 2nb)2

(x− (2m + 1)a)2 + (y − (2n + 1)b)2
. (42)

The potential (42) is zero at points (x, y) = (ma + a/2, nb + b/2) and diverges at the
wires.

2.6 Array of Cells with 1 Anode and 3 Cathode Wires

The array of cells shown in Fig. 5 differs from that in Fig. 4 by the addition of cathode
wires at (x, y) = (2ma, (2n + 1)b) and at ((2m + 1)a, 2nb). Again, we sum the logarithmic
potentials of the wires to find,

φ(x, y) = q
∑
m,n

(
ε1 ln[(x − 2ma)2 + (y − 2nb)2] + ε2 ln[(x− 2ma)2 + (y − (2n + 1)b)2]

+ε3 ln[(x− (2m + 1)a)2 + (y − 2nb)2] − ln[(x− (2m + 1)a)2 + (y − (2n + 1)b)2]
)
, (43)

where the sum of the charges per unit length, −ε1q, −ε2q and −ε3q, on the cathode wires is
the negative of the charge per unit length q on the anode wire.
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